Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1100-1108.doi: 10.3724/SP.J.1006.2021.04138

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.)

HUANG Bing-Yan1(), SUN Zi-Qi1, LIU Hua1, FANG Yuan-Jin1, SHI Lei1, MIAO Li-Juan1, ZHANG Mao-Ning1, ZHANG Zhong-Xin1, XU Jing1, ZHANG Meng-Yuan2, DONG Wen-Zhao1, ZHANG Xin-You1,*()   

  1. 1Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/Graduate R & T Base of Zhengzhou University/Key Laboratory of Oil Crops in Huang-Huai-Hai Plans, Ministry of Agriculture and Rural Affairs/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China
    2College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
  • Received:2020-06-24 Accepted:2020-12-01 Online:2021-06-12 Published:2020-12-30
  • Contact: ZHANG Xin-You E-mail:huangbingyan@aliyun.com;haasz@126.com
  • Supported by:
    The China Agricultural Research System(CARS-13);The Henan Agricultural Research System(2016-05);The Key Scientific and Technological Project of Henan Province(201300111000)

Abstract:

Nested populations can be used to dissect the heredity of complex traits. The genetic models of fat content of F2:3 families in nested combinations with one common parent and six founder parents were analyzed, aiming to detect the genetic differences among the founders and to provide bases for breeding strategy for fat content improvement in peanut kernels. The common parent was Yuhua 15, an irregular-type variety with high fat content, and the other six founder parents were different botanical varieties with different fat contents. The results showed that the genetic model of fat content traits was different in different combinations. Six crosses were in accordance with three genetic patterns, including none major gene model, one major gene model with additive and dominant effect, and two major genes model with equal additive and dominant effect. The estimated values of various genetic effects were also different. The heritability of the main genes ranged from 32% to 80%, indicating that the gene loci controlling the fat content and their segregation patterns were different in different F2:3 populations. There were more individuals with high fat content in the offspring from combinations with both parents of high fat content. However, the heritability was low and phenotypic selections for fat content were not suggested in the early generations in such combinations. The offspring from combinations with parents of significantly different fat content had a larger variation range in fat content, and phenotypes with variable fat content were available. In this study, the large variances in the nested populations demonstrated the genetic complexity of fat content and the characteristics of multi major gene regulation. These results provide a comprehensive base for understanding the genetics and regulation of fat content, and the nested populations will be helpful in further QTL detection of fat content in peanut.

Key words: peanut (Arachis hypogaea L.), nested populations, fat content, F2:3 family, inheritance model

Table 1

Information of the nested crossing populations"

群体代号
Population code
杂交组合
Cross combination
F2:3家系个数
Number of F2:3 family
AC 远杂9102×豫花15号 Yuanza 9102×Yuhua 15 472
BC 中花6号×豫花15号 Zhonghua 6×Yuhua 15 392
CE 豫花15号×粤油20 Yuhua 15×Yueyou 20 286
CF 豫花15号×四粒红 Yuhua 15×Silihong 395
CG 豫花15号×伏花生 Yuhua 15×Fuhuasheng 256
CH 豫花15号×NC94022 Yuhua 15×NC94022 269

Fig. 1

Distribution of fat content in F2 population"

Table 2

Analysis of genetic model of fat content"

组合
Cross combination
模型
Models
最大似然值
Maximum likelihood value
AIC值
AIC value
AC 1对主基因加性显性 1MG-AD -944.2088 1896.418
无主基因 0MG -946.4774 1896.955
1对主基因负向完全显性 1MG-NCD -944.7637 1897.527
2对主基因等加性 2MG-EA -946.4752 1898.950
BC 2对主基因等显性 2MG-EAD -729.4342 1464.868
1对主基因加性显性 1MG-AD -728.9680 1465.936
无主基因 0MG -731.3869 1466.774
1对主基因完全显性 1MG-EAD -729.4457 1466.891
CE 2对主基因等显性 2MG-EAD -521.0105 1048.021
1对主基因加性显性 1MG-AD -520.7663 1049.533
2对主基因完全显性 2MG-CD -521.1385 1050.277
1对主基因完全显性 1MG-EAD -521.1419 1050.284
CF 无主基因 0MG -719.3989 1442.798
2对主基因等显性 2MG-EAD -718.5605 1443.121
2对主基因等加性 2MG-EA -719.3983 1444.797
1对主基因加性 1MG-A -719.4056 1444.811
CG 2对主基因等显性 2MG-EAD -547.5336 1101.067
1对主基因加性显性 MG-AD -548.7668 1105.534
2对主基因完全显性 2MG-CD -548.9751 1105.950
1对主基因完全显性 1MG-EAD -548.9754 1105.951
CH 无主基因 0MG -565.0724 1134.145
2对主基因等显性 2MG-EAD -564.9840 1135.968
2对主基因等加性 2MG-EA -565.0737 1136.147
1对主基因加性 1MG-A -565.0762 1136.152

Table 3

Fitness test for genetic models"

组合
Cross
combination
模型
Models
U12 PU12 U22 PU22 U32 PU32 nW2 PnW2 Dn PDn
AC 1对主基因加性显性 1MG-AD 0.0539 0.8164 0.4283 0.5128 2.9528 0.0857 0.1785 0.3143 0.0467 0.2480
无主基因 0MG 0.4265 0.5137 1.0459 0.3064 2.4383 0.1184 0.2416 0.2045 0.0506 0.1718
1对主基因负向完全显性 1MG-NCD 0.1073 0.7432 0.5637 0.4528 3.0078 0.0829 0.1927 0.2835 0.0483 0.2129
2对主基因等加性 2MG-EA 0.4274 0.5132 1.0343 0.3091 2.3592 0.1245 0.2394 0.2074 0.0504 0.1755
BC 2对主基因等显性 2MG-EAD 0.0536 0.8169 0.0023 0.9615 1.1869 0.2760 0.0736 0.738 0.0334 0.7598
1对主基因加性显性 1MG-AD 0.0248 0.8749 0.0097 0.9216 1.0076 0.3155 0.0586 0.8246 0.0326 0.7864
无主基因 0MG 0.3584 0.5494 0.1334 0.7150 0.7358 0.3910 0.1308 0.4576 0.0391 0.5727
1对主基因完全显性 1MG-EAD 0.0516 0.8202 0.0021 0.9637 1.1286 0.2881 0.0688 0.7650 0.0334 0.7615
组合
Cross
combination
模型
Models
U12 PU12 U22 PU22 U32 PU32 nW2 PnW2 Dn PDn
CE 2对主基因等显性 2MG-EAD 0.0580 0.8097 0.0003 0.9863 0.7465 0.3876 0.0662 0.7798 0.0336 0.8915
1对主基因加性显性 1MG-AD 0.0241 0.8766 0.0019 0.9655 0.6001 0.4385 0.0419 0.9229 0.0271 0.9812
2对主基因完全显性 2MG-CD 0.0462 0.8298 0 0.9999 0.6924 0.4053 0.0521 0.8641 0.0303 0.9479
1对主基因完全显性 1MG-EAD 0.0465 0.8293 0 0.9994 0.6927 0.4052 0.0521 0.8638 0.0304 0.9474
CF 无主基因 0MG 0.2154 0.6426 0.0247 0.8752 1.3671 0.2423 0.0934 0.6303 0.0341 0.7341
2对主基因等显性 2MG-EAD 0.0791 0.7785 0.0018 0.9660 1.5871 0.2077 0.0770 0.7192 0.0354 0.6928
2对主基因等加性 2MG-EA 0.2156 0.6424 0.0271 0.8692 1.2986 0.2545 0.0918 0.6386 0.0338 0.7446
1对主基因加性 1MG-A 0.2160 0.6421 0.0272 0.8691 1.3008 0.2541 0.0919 0.6379 0.0338 0.7440
CG 2对主基因等显性 2MG-EAD 0 0.9982 0.0006 0.9809 0.0109 0.9168 0.0299 0.9766 0.0329 0.9352
1对主基因加性显性 1MG-AD 0.0051 0.9428 0.0186 0.8914 0.0720 0.7885 0.0430 0.9170 0.0284 0.9821
2对主基因完全显性 2MG-CD 0.0024 0.9609 0.0212 0.8841 0.1546 0.6942 0.0444 0.9094 0.0291 0.9772
1对主基因完全显性 1MG-EAD 0.0024 0.9608 0.0213 0.8841 0.1543 0.6945 0.0444 0.9094 0.0291 0.9778
CH 无主基因 0MG 0.0062 0.9374 0.0148 0.9033 0.6243 0.4295 0.1133 0.5313 0.0546 0.3845
2对主基因等显性 2MG-EAD 0.0009 0.9765 0.0263 0.8712 0.5813 0.4458 0.1173 0.5131 0.0549 0.3795
2对主基因等加性 2MG-EA 0.0061 0.9379 0.0128 0.9100 0.5685 0.4509 0.1122 0.5362 0.0542 0.3951
1对主基因加性 1MG-A 0.0061 0.9377 0.0128 0.9101 0.5694 0.4505 0.1122 0.5362 0.0542 0.3949

Table 4

Estimation of genetic parameters of fat content"

组合
Crosses
模型
Models
m da db ha hb Var.mg hmg
AC 1对主基因加性显性 1MG-AD 57.5201 1.1342 -2.3266 1.0357 31.9936
无主基因 0MG
1对主基因负向完全显性 1MG-NCD 57.2576 1.2970 0.9789 30.2396
2对主基因等加性 2MG-EA 56.9106 0.2372 0.0660 2.0382
BC 2对主基因等显性 2MG-EAD 55.5452 0.9807 1.1551 47.1385
1对主基因加性显性 1MG-AD 55.4744 1.0402 2.1944 0.8997 36.7188
无主基因 0MG
1对主基因完全显性 1MG-EAD 55.7181 1.2259 0.8773 35.8046
CE 2对主基因等显性 2MG-EAD 54.0134 1.0075 1.2100 52.9489
1对主基因加性显性 1MG-AD 53.9686 1.0950 2.1686 0.9448 41.3432
2对主基因完全显性 2MG-CD 54.1576 1.2797 0.1270 0.9596 41.9920
1对主基因完全显性 1MG-EAD 54.1894 1.2796 0.9498 41.5652
CF 无主基因 0MG
2对主基因等显性 2MG-EAD 53.6370 0.7674 0.7028 31.3534
2对主基因等加性 2MG-EA 54.0267 0.2282 0.0604 2.6958
1对主基因加性 1MG-A 54.0290 0.2888 0.0494 2.2052
组合
Crosses
模型
Models
m da db ha hb Var.mg hmg
CG 2对主基因等显性 2MG-EAD 51.6018 1.6437 3.6377 79.7548
1对主基因加性显性 1MG-AD 51.8983 2.3225 1.5772 2.9822 65.3833
2对主基因完全显性 2MG-CD 51.7690 2.1335 0.1047 2.7537 60.3730
1对主基因完全显性 1MG-EAD 51.7952 2.1334 2.7468 60.2228
CH 无主基因 0MG
2对主基因等显性 2MG-EAD 53.8575 0.7166 0.6290 16.0300
2对主基因等加性 2MG-EA 54.2152 0.3550 0.1469 3.7446
1对主基因加性 1MG-A 54.2168 0.4650 0.1280 3.2625
[1] FAOSTAT, 2020. FAO. http://www.fao.org/faostat/en/#home.
[2] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平. 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008,34:999-1004.
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P. Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008,34:999-1004 (in Chinese with English abstract).
[3] 禹山林, 杨庆利, 潘丽娟, 薄文娜. 花生种子含油量的遗传分析. 植物遗传资源学报, 2009,10:453-456.
Yu S L, Yang Q L, Pan L J, Bo W N. Genetic analysis for oil content of peanut seeds. J Plant Genet Resour, 2009,10:453-456 (in Chinese with English abstract).
[4] 陈四龙, 李玉荣, 程增书, 廖伯寿, 雷永, 刘吉生. 花生含油量杂种优势表现及主基因+多基因遗传效应分析. 中国农业科学, 2009,42:3048-3057.
Chen S L, Li Y R, Cheng Z S, Liao B S, Lei Y, Liu J S. Heterosis and genetic analysis of oil content in peanut using mixed model of major gene and polygene. Sci Agric Sin, 2009,42:3048-3057 (in Chinese with English abstract).
[5] Zhang X, Zhu S, Han S, Xu J, Liu H, Tang F, Dong W, Zang X, Zhang Z X. Inheritance of fat and fatty acid compositions in peanut (Arachis hypogaea L.). Agric Sci Technol, 2011,12:943-946.
[6] 刘华, 张新友, 崔党群, 汤丰收, 董文召, 韩锁义, 徐静, 臧秀旺, 张忠信. 花生蛋白质和脂肪含量的主基因+多基因遗传分析. 江苏农业科学, 2011,39(2):127-130.
Liu H, Zhang X Y, Cui D X, Tang F S, Dong W Z, Han S Y, Xu J, Zang X W, Zhang Z X. Genetic analysis of protein and fat content using major gene plus polygene methods in peanut (Arachis hypogaea L.). Jiangsu Agric Sci, 2011,39(2):127-130 (in Chinese with English abstract).
[7] 刘华, 秦利, 张新友, 韩锁义, 杜培, 张忠信, 孙子淇, 齐飞艳, 董文召, 黄冰艳. 基于花生种间杂交遗传群体的脂肪及脂肪酸含量的遗传模型分析. 中国油料作物学报, 2016,38:172-178.
Liu H, Qin L, Zhang X Y, Han S Y, Du P, Zhang Z X, Sun Z Q, Qi F Y, Dong W Z, Huang B Y. Genetic models of peanut fat and fatty acid compositions based on interspecific RIL population. Chin J Oil Crop Sci, 2016,38:172-178 (in Chinese with English abstract).
[8] 王建康, 盖钧镒. 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997,24:432-440.
Wang J K, Gai J Y. Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 progeny. Act Genet Sin, 1997,24:432-440 (in Chinese with English abstract).
[9] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. Crop J, 2015,3:269-283.
[10] 甘信民, 曹玉良, 魏家祥, 崔务峰, 顾淑媛, 刘法生. 花生数量性状配合力的研究. 中国油料作物学报, 1981, (3):33-45.
Gan S M, Cao Y L, Wei J X, Cui W F, Gu S Y, Liu F S. Combining ability analysis of quatitative traits in peanut. Chin J Oil Crop Sci, 1981, ( 3):33-45 (in Chinese with English abstract).
[11] Isleib T G, Pattee H E, Giesbrecht F G. Oil, sugar, and starch characteristics in peanut breeding lines selected for low and high oil content and their combining ability. J Agric Food Chem, , 200452:3165-3168.
[12] 徐宜民, 甘信民, 曹玉良, 顾淑媛, 刘法生. 花生主要营养品质性状和农艺性状配合力的研究. 中国农业科学, 1995,28(2):15-23.
Xu Y M, Gan X M, Cao Y L, Gu S Y, Liu F S. studies on combining ability of major nutritional quality characters and agronomic characters in peanut. Sci Agric Sin, 1995,28(2):15-23 (in Chinese with English abstract) .
[13] 梁炫强, 郑广柔, 向荣英, 黎秀英. 珍珠豆型花生产量和含油率性状配合力分析. 花生科技, 1991, ( 3):11-14.
Liang X Q, Zheng G R, Xiang R Y, Li X Y. Combining ability analysis of yield and oil content of Spanish type peanut. Sci Technol Peanut, 1991, ( 3):11-14 (in Chinese with English abstract).
[14] 梁炫强, 郑广柔, 向荣英, 黎秀英. 珍珠豆型花生产量和含油率遗传特性的双列分析. 中国油料, 1992, ( 1):19-23.
Liang X Q, Zheng G R, Xiang R Y, Li X Y. A diallel analysis of yield and oil content of spanish type peanut. Chin Oil Crop, 1992, ( 1):19-23 (in Chinese with English abstract).
[15] 付三雄, 戚存扣. 甘蓝型油菜含油量的主基因+多基因遗传分析. 江苏农业学报, 2009,25:731-736.
Fu S X, Qi C K. Major gene plus polygene inheritance of oil content in Brassica napus L. Jiangsu J Agric Sci, 2009,25:731-736 (in Chinese with English abstract).
[16] Zhang S F, Ma C Z, Zhu J C, Wang J P, Wen Y C, Fu T D. Genetic analysis of oil content in Brassica napus L. using mixed model of major gene and polygene. Acta Genet Sin, 2006,2:171-180.
[17] 金梦阳, 李加纳, 付福友, 张正圣, 张学昆, 刘列钊. 甘蓝型油菜含油量及皮壳率的QTL分析. 中国农业科学, 2007,40:677-684.
Jin M Y, Li J N, Fu F Y, Zhang Z S, Zhang X K, Liu L Z. QTL analysis of oil and hull content in Brassica napus L. Sci Agric Sin, 2007,40:677-684 (in Chinese with English abstract).
[18] 张洁夫, 戚存扣, 浦惠明, 陈松, 陈锋, 高建芹, 陈新军, 顾慧, 傅寿仲. 甘蓝型油菜含油量的遗传与QTL定位. 作物学报, 2007,33:1495-1501.
Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Gao J Q, Chen X J, Gu H, Fu S Z. Inheritance and QTL identification of oil content in rapeseed (Brassica napus L.). Acta Agron Sin, 2007,33:1495-1501 (in Chinese with English abstract).
[19] 张新友, 韩锁义, 徐静, 严玫, 刘华, 汤丰收, 董文召, 黄冰艳. 花生主要品质性状的QTLs定位分析. 中国油料作物学报, 2012,34:311-315.
Zhang X Y, Han S Y, Xu J, Yan M, Liu H, Tang F S, Dong W Z, Huang B Y. Identification of QTLs for important quality traits in cultivated peanut (Arachis hypogaea L.). Chin J Oil Crop Sci, 2012,34:311-315 (in Chinese with English abstract).
[20] 黄莉, 赵新燕, 张文华, 樊志明, 任小平, 廖伯寿, 姜慧芳, 陈玉宁. 利用RIL群体和自然群体检测与花生含油量相关的SSR标记. 作物学报, 2011,37:1967-1974.
Huang L, Zhao X Y, Zhang W H, Fan Z M, Ren X P, Liao B S, Jiang H F, Chen Y N. Identification of SSR markers linked to oil content in peanut (Arachis hypogaea L.) through RIL population and natural population. Acta Agron Sin, 2011,37:1967-1974 (in Chinese with English abstract).
[21] Pandey M K, Wang M L, Qiao L X, Feng S P, Khera P, Wang H, Tonnis B, Barkley N A, Wang J P, Holbrook C C, Culbreath A K, Varshney R K, Guo B Z. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet, 2014,15:133.
[22] 魏大勇, 崔艺馨, 梅家琴, 汤青林, 李加纳, 钱伟. 油菜种子含油量GWAS分析及位点整合系统构建. 作物学报, 2018,44:1311-1319.
Wei D Y, Cui Y X, Mei J Q, Tang Q L, Li J N, Qian W. Genome-wide association study on seed oil content in rapeseed and construction of integration system for oil content loci. Acta Agron Sin, 2018,44:1311-1319 (in Chinese with English abstract).
[23] Sun F M, Liu J, Hua W, Sun X C, Wang X F, Wang H Z. Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus. Plant Sci, 2016,252:388-399.
pmid: 27717475
[24] Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008,178:539-551.
[25] Li H, Bradbury P, Ersoz E, Buckler E S, Wang J. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One, 2011,6:e17573.
[26] Xavier A, Xu S, Muir W M, Rainey K M. NAM: association studies in multiple populations. Bioinformatics, 2015,31:3862-3864.
[27] Bouchet S, Olatoye M O, Marla SR, Perumal R, Tesso T, Yu J M, Tuinstra M, Morris G P. Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics, 2017,206:573-585.
[28] Schnaithmann F, Kopahnke D, Pillen K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet, 2014,127:1513-1525.
[29] Xavier A, Jarquin D, Howard R, Ramasubramanian V, Specht J E, Graef G L, Beavis W D, Diers B W, Song Q, Cregan P B, Nelson R, Mian R, Shannon J G, McHale L, Wang D, Schapaugh W, Lorenz A J, Xu S, Muir W M., Rainey K M. Genome-wide analysis of grain yield stability and environmental interactions in a multiparental soybean population. G3: Genes Genom Genet, 2018,8:519-529.
[30] Khan M A, Tong F, Wang W, He J, Zhao T, Gai J. Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [ Glycine max (L.) Merr.] using a novel GWAS procedure. Planta, 2018,248:947-962.
[31] Chen Q, Yang C J, York A M, Xue W, Daskalska L L, DeValk C A, Krueger K W, Lawton S B, Spiegelberg B G, Schnell J M, Neumeyer M A, Perry J S, Peterson A C, Kim B, Bergstrom L, Yang L, Barber I C, Tian F, Doebley J F. TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics, 2019,213:1065-1078.
[32] Beche E, Gillman J D, Song Q, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo A M. Nested association mapping of important agronomic traits in three interspecific soybean populations. Theor Appl Genet, 2020,133:1039-1054.
[33] Garin V, Wimmer V, Mezmouk S, Malosetti M, Eeuwijk F. How do the type of QTL effect and the form of the residual term influence QTL detection in multi-parent populations? A case study in the maize EU-NAM population. Theor Appl Genet, 2017,130:1753-1764.
pmid: 28547012
[34] Monir M M, Zhu J. Dominance and epistasis interactions revealed as important variants for leaf traits of maize NAM population. Front Plant Sci, 2018,9:627.
[35] Hu J, Guo C, Wang B, Ye J, Liu M, Wu Z, Xiao Y, Zhang Q, Li H, King G J, Liu K. Genetic properties of a nested association mapping population constructed with semi-winter and spring oilseed rapes. Front Plant Sci, 2018,9:1740.
pmid: 30534135
[36] Jordan K W, Wang S, He F, Chao S, Lun Y, Paux E, Sourdille P, Sherman J, Akhunova A, Blake N K, Pumphrey M O, Glover K, Dubcovsky J, Talbert L, Akhunov E D. The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping. Plant J, 2018,95:1039-1054.
[37] Kidane Y G, Gesesse C A. Hailemariam B N, Desta E A, Mengistu D K, Fadda C, Pè M E, Dell’Acqua M . A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. Plant Biotechnol J, 2019,17:1380-1393.
[38] Marla S R., Burow G, Chopra R, Hayes C, Olatoye M O, Felderhoff T, Hu Z, Raymundo R, Perumal R, Morris G P. Genetic architecture of chilling tolerance in sorghum dissected with a nested association mapping population. G3: Genes Genom Genet, 2019,9:4045-4057.
[39] Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2010,18:1457-1471.
[1] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[2] LIN Ting-Ting,WANG Jian-Jun,WANG Li,CHEN Xuan,HOU Xi-Lin,LI Ying. Major Gene Plus Polygene Inheritance Analysis of Vitamin C Content in Non-heading Chinese Cabbage [J]. Acta Agron Sin, 2014, 40(10): 1733-1739.
[3] ZHANG Qi-Wu,JIANG Jian-Hua,YAO Jin,HONG De-Lin. Characterization and Genetic Analysis of Grain Filling Rate of Ludao and Restorer Line C-Bao in Japonica Rice(Oryza sativa L.) [J]. Acta Agron Sin, 2009, 35(7): 1229-1235.
[4] LIU Shun-Hu,ZHOU Rui-Bao,YU De-Yue,CHEN Shou-Yi,GAI Jun-Yi.   QTL Mapping of Protein Related Traits in Soybean[Glycine max (L.) Merr.] [J]. Acta Agron Sin, 2009, 35(12): 2139-2149.
[5] LIU Shun-Hu,ZHOU Rui-Bao,GAI Jun-Yi. Segregation Analysis for Inheritance of Protein Related Traits in Soybean[Glycine max(L.) Merr.] [J]. Acta Agron Sin, 2009, 35(11): 1958-1966.
[6] XING Guang-Nan;ZHAO Tuan-Jie;GAI Jun-Yi. Inheritance of Resistance to Lamprosema indicata (Fabricius) in Soybean [J]. Acta Agron Sin, 2008, 34(01): 8-16.
[7] CAI Chang-Chun;CHEN Bao-Yuan;FU Ting-Dong;TU Jin-Xing. Genetic Analysis of Flowering Time and Photoperiod Sensitivity in Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2007, 33(02): 345-348.
[8] YI Qiu-Xiang;HUANG Jing-Feng;WANG Xiu-Zhen;QIAN Yi. Preliminary Hyperspectral Estimation Models for Crude Fat Content in Corn [J]. Acta Agron Sin, 2007, 33(01): 171-174.
[9] ZHANG Pei-Tong;ZHU Xie-Fei;GUO Wang-Zhen;YU Jing-Zhong;ZHANG Tian-Zhen. Genetic Mechanism of High Yield in G. hirsutum cv. Simian 3Ⅰ. Inheritance Analysis Using Major Gene Plus Polygene Mixed Inheritance Model [J]. Acta Agron Sin, 2006, 32(07): 1011-1017.
[10] LU Wei-Guo; GAI Jun-Yi; and LI Wei-Dong. Inheritance of Resistance to Race 1 and Race 4 of Cyst Nematode (Heterodera glycines Ichinohe) in Soybeans [J]. Acta Agron Sin, 2006, 32(05): 650-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!