Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1996-2006.doi: 10.3724/SP.J.1006.2022.13047
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Tian-Bo(), HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying*()
[1] |
Walters C, Ballesteros D, Vertucci V A. Structural mechanics of seed deterioration: standing the test of time. Plant Sci, 2010, 179: 565-573.
doi: 10.1016/j.plantsci.2010.06.016 |
[2] |
Ballesteros D, Walters C. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. Plant J, 2011, 68: 607-619.
doi: 10.1111/j.1365-313X.2011.04711.x |
[3] | Harman D. Aging: a theory based on free radical and radiation chemistry. Biol Sci Med Sci, 1956, 11: 298-300. |
[4] |
Pukacka S, Ratajczak E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J Plant Physiol, 2006, 163: 1259-1266.
doi: 10.1016/j.jplph.2005.10.003 |
[5] | Roach T, Beckett R P, Minibayeva F V, Colville L, Whitaker C, Chen H Y, Bailly C, Kranner I. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ, 2010, 33: 59-75. |
[6] |
Ratajczak E, Maecka A, Ciereszko I, Staszak A. Mitochondria are important determinants of the aging of seeds. Int J Mol Sci, 2019, 20: 1568.
doi: 10.3390/ijms20071568 |
[7] |
Rhoads D M, Umbach A L, Subbaiah C C, Siedow J N. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol, 2006, 141: 357-366.
pmid: 16760488 |
[8] |
Xin X, Lin X H, Zhou Y C, Chen X L, Liu X, Lu X X. Proteome analysis of maize seeds: the effect of artificial ageing. Physiol Plant, 2011, 143: 126-138.
doi: 10.1016/S0176-1617(11)82112-7 |
[9] |
Li Y, Wang Y, Xue H, Pritchard H W, Wang X. Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila L.) seeds. Plant Physiol Biochem, 2017, 114: 72-87.
doi: 10.1016/j.plaphy.2017.02.023 |
[10] | Beatriz F M, Ilse K, San S M, Unai A, Manuel L J, Luis V J, Pritchard H W, Jayanthi N, Fátima M, María B J. Evidence for the absence of enzymatic reactions in the glassy state: a case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. J Exp Bot, 2013: 3033-3043. |
[11] |
Chen H, Osuna D, Colville L, Lorenzo O, Graeber K, Küster H, Kranner I. Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS One, 2013, 8: e78471.
doi: 10.1371/journal.pone.0078471 |
[12] |
Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after- ripening. Plant Cell, 2011, 23: 2196-2208.
doi: 10.1105/tpc.111.086694 |
[13] | 杨伟飞, 张景龙, 吕伟增, 曹广灿, 陈军营. 人工劣变处理对玉米种胚差异基因表达的影响. 中国农业科学, 2014, 10: 1878-1893. |
Yang W F, Zhang J L, Lyu W Z, Cao G C, Chen J Y. Study on the differential genes expression in maize embryo treated by a controlled deterioration treatment. Sci Agric Sin, 2014, 10: 1878-1893. (in Chinese with English abstract) | |
[14] | ISTA. 国际种子检验规程. 北京: 中国农业出版社, 1996. pp 187-188. |
ISTA. International Rules for Seed Testing. Beijing: China Agriculture Press, 1996. pp 187-188. (in Chinese) | |
[15] | 胡晋. 对种子活力测定方法--TTC定量法的改进. 种子, 1986, (增刊1): 73-74. |
Hu J. Improvement of TTC quantitative method for determination of seed vigor. Seed, 1986, (S1): 73-74. (in Chinese) | |
[16] | 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2003. |
Zhang Z L. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2003. (in Chinese) | |
[17] | 李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进. 云南植物研究, 2005, 27(2): 211-216. |
Li Z G, Gong M. Improvement of determination method of superoxide anion radical in plants. Acta Bot Yunnan, 2005, 27(2): 211-216. (in Chinese with English abstract) | |
[18] | 马春花, 铁轶, 付汉江, 刘斌, 邢瑞云, 朱捷, 丁勇, 郑晓飞. mRNA氧化损伤检测方法的优化及p53 mRNA氧化损伤分析. 军事医学, 2013, 37(3): 180-183. |
Ma C H, Tie Y, Fu J H, Liu B, Xing R Y, Zhu J, Ding Y, Zheng X F. Optimization of method to detect mRNA oxidative damage and quantification of p53 mRNA oxidative damage. Milit Med Sci, 2013, 37(3): 180-183. (in Chinese with English abstract) | |
[19] |
Basak O, Demir I, Mavi K, Matthews S. Controlled deterioration test for predicting seedling emergence and longevity of pepper (Capsicum annuum L.) seed lot. Seed Sci Technol, 2006, 34: 701-712.
doi: 10.15258/sst.2006.34.3.16 |
[20] |
Wang Y, Li Y, Xue H, Pritchard H W, Wang X. Reactive oxygen species provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. Plant J, 2015, 81: 438-452.
doi: 10.1111/tpj.12737 |
[21] |
Fleming M B, Richards C M, Christina W. Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J Exp Bot, 2017, 68: 2219-2230.
doi: 10.1093/jxb/erx100 |
[22] | Bewley J D, Black M. Seeds:Physiology of Development and Germination. New York and London: Plenum Press, 1994. |
[23] | Bailly C, El-Maarouf-Bouteau H, Corbineau F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comp Rendus Biol, 2008, 331: 806-814. |
[24] |
Rajjou L, Lovigny Y, Groot S, Belghazi M, Job J D. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol, 2008, 148: 620-641.
doi: 10.1104/pp.108.123141 pmid: 18599647 |
[25] |
Yin G K, Xin X, Song C, Chen X, Zhang J, Wu S, Li R, Liu X, Lu X. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. Plant Physiol Biochem, 2014, 80: 1-9.
doi: 10.1016/j.plaphy.2014.03.006 |
[26] |
Ratajczak E, Maecka A, Bagniewska Z A, Kalemba E M. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. J Plant Physiol, 2015, 174: 147-156.
doi: 10.1016/j.jplph.2014.08.021 |
[27] |
Wang X F, Jing X M, Lin J. Starch mobilization in ultradried seed of maize (Zea mays L.) during germination. J Integr Plant Biol, 2005, 47: 443-451.
doi: 10.1111/j.1744-7909.2005.00088.x |
[28] | Benamar A, Rolletschek H, Borisjuk L, Avelange-Macherel M H, Curien G, Mostefai H A. Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochim Biophys Acta, 2008, 1777: 1268-1275. |
[29] | Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol, 2007, 292: 670-686. |
[30] |
Werner K. Structure and function of mitochondrial membrane protein complexes. BMC Biol, 2015, 13: 89.
doi: 10.1186/s12915-015-0201-x |
[31] |
Marcus A, Feeley J. Activation of protein synthesis in the imbibition phase of seed germination. Proc Natl Acad Sci USA, 1964, 51: 1075-1079.
doi: 10.1073/pnas.51.6.1075 |
[32] |
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565 |
[33] |
Kong Q, Lin C L. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci, 2010, 67: 1817-1829.
doi: 10.1007/s00018-010-0277-y |
[34] |
Shcherbik N, Pestov D G. The impact of oxidative stress on ribosomes: from injury to regulation. Cells, 2019, 8: 1379.
doi: 10.3390/cells8111379 |
[35] |
Schmidt M, Luff M, Mollwo A, Kaminski M, Mittag M, Kreimer G. Evidence for a specialized localization of the chloroplast ATP-synthase subunits alpha, beta, and gamma in the eyespot apparatus of Chlamydomonas reinhardtii (Chlorophyceae). J Phycol, 2011, 43: 284-294.
doi: 10.1111/j.1529-8817.2007.00331.x |
[36] |
Wang C, Chen Z, Li S, Zhang Y, Jia S, Li J, Chi Y, Miao Y, Guan Y, Yang J. Hepatic overexpression of ATP synthase β subunit activates PI3K/Akt pathway to ameliorate hyperglycemia of diabetic mice. Diabetes, 2014, 63: 947-959.
doi: 10.2337/db13-1096 |
[37] |
Lee T, Paul R, Langlais N, Hoffman L, Roust C. Mitochondrial ATP synthase beta subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity. Exp Physiol, 2019, 104: 126-135.
doi: 10.1113/EP087278 |
[38] |
Shirakihara Y, Shiratori A, Tanikawa H, Nakasako M, Suzuki T. Structure of a thermophilic F1-ATPase inhibited by an ε-subunit: deeper insight into the ε-inhibition mechanism. FEBS J, 2015, 282: 2895-2913.
doi: 10.1111/febs.13329 pmid: 26032434 |
[39] |
Sun J, Hu H, Li Y, Wang L, Zhou Q, Huang X. Effects and mechanism of acid rain on plant chloroplast ATP synthase. Environ Sci Pollut Res, 2016, 23: 18296-18306.
doi: 10.1007/s11356-016-7016-3 |
[1] | HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. |
[2] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. |
|