Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 1996-2006.doi: 10.3724/SP.J.1006.2022.13047

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos

WANG Tian-Bo(), HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying*()   

  1. College of Agronomy, Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2021-07-09 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-24
  • Contact: CHEN Jun-Ying E-mail:15093455085@163.com;chenjunying3978@126.com
  • Supported by:
    National Natural Science Foundation of China(31971998);National Natural Science Foundation of China(31571761)

Abstract:

In this study, hybrid maize (Zea mays L.) cultivar ‘Zhengdan 958' seeds were used as materials to reveal the mechanism of seed aging. After artificial aging treatment (45℃, 100% relative humidity), the seed vigor, O2- production, ATP content, and ATP synthase activity of seed embryo were investigated, and the integrity of ATP synthase subunit mRNAs in seed embryo and different organs (scutellum, radicle, and plumule) was analyzed by the reverse transcription blocking and double-primer amplification method. The results showed that the germination rate and radicle growth rate of maize seeds decreased, the viability of embryo decreased and the respiration intensity of seeds decreased after artificial aging treatment. The O2- production rate in embryo reached the peak on the 3rd day of aging treatment, and then decreased, the O2- production rate and content in radicle and plumule increased significantly. The ATP content and ATP synthase activity in embryo decreased. The mRNA integrity of ATP synthase ε-subunit and γ-subunit increased first and then decreased. The mRNA integrity of δ-subunit did not change significantly. The mRNA integrity of α-subunit and β-subunit decreased continuously in artificial aging treatment. The damage degree of mRNA integrity of ATP synthase subunits in radicle and plumule was much greater than that in scutellum. These results revealed that the production and accumulation of ROS in radicle and plumule could lead to different degrees of damage to ATP synthase subunit mRNAs and the activity of ATP synthase and the content of ATP in embryo decreased, which resulted in the lack of energy supply during germination, and this maybe one of the major factors causing maize seed aging.

Key words: maize embryo, artificial aging, ROS production, ATP synthesis, integrity of mRNAs

Fig. 1

Reverse transcription blocking and double primers amplification schematics The dots are oxidative damage sites."

Fig. 2

Germination rate (a), radicle length (b) during imbibition of aged maize seeds, and growth status (c) at 60 hours of imbibition Bar: 1.0 cm."

Fig. 3

Effects of artificial aging treatment on seed viability in maize (a) TTC staining of maize embryo; S: scutellum; R: radicle; P: plumule; bar: 2.0 mm. (b) Effects of aging treatment on dehydrogenase activity of maize embryo. Bars superscripted by different lowercase letters are significantly different at the 0.05 probability level."

Fig. 4

Change of respiration rates of aged maize seeds during imbibition period Different lowercase letters indicate significant difference among different aging treatments at the same imbibition time."

Fig. 5

NBT staining of maize embryos after aging treatment S: scutellum; R: radicle; P: plumule. "

Fig. 6

Effects of artificial aging on O2- production rate of embryos (a) and different organs (b) Different lowercase letters indicate significant difference among different aging treatments of the same organ."

Fig. 7

Change of ATP content in aged maize seeds during imbibition Different lowercase letters indicate significant difference among different aging treatments at the same imbibition time."

Fig. 8

Change of ATP synthase activities in maize embryos (a) and different organs (b) after aging treatment Different lowercase letters indicate significant difference among different aging treatments of the same organ."

Table 1

ATP synthase subunit genes and primer sequences"

基因ID
Gene ID
引物方向
Primer direction
引物序列
Primer sequence (5′-3′)
位置
Position
退火温度
Tm (℃)
产物长度
Product length (bp)
Zm00001d040880-5' (ATP-α) F ACAGCCTTCTCTTCTCAT 314 59.0 123
R CTTAGTTCAGAGTTGCCTC 436 59.1
Zm00001d040880-3' (ATP-α) F GCGACTTAGGCATTACTC 1784 59.0 139
R CTAGTGGCATTCGATCAC 1922 59.0
Zm00001d038929-5' (ATP-β) F TGGACGCATCATAAATGTTA 494 59.0 88
R GGCTTCACGATGAATAGG 581 59.0
Zm00001d038929-3' (ATP-β) F GCAGTCATTCTACATGGTT 1589 59.0 88
R GAAGCCTCCTTATGAAGC 1676 58.9
Zm00001d028207-5' (ATP-γ) F CTCAAGTTGTGAGGAACC 305 59.0 188
R AATCACATTCTTCTTGACGT 492 59.1
Zm00001d028207-3' (ATP-γ) F CTCACGCTTACTTACAACA 1054 59.0 99
R TCTCTTCACCTATCCTTCAA 1152 59.1
Zm00001d006439-5' (ATP-δ) F AAGGAGGTTGACATGGTA 384 58.9 87
R CTTGAGCTCTGCAATTGT 470 59.4
Zm00001d006439-3' (ATP-δ) F TGATATTGTGGCTGTTGAG 559 59.0 149
R CACTGTGAACATCGACTC 707 59.2
Zm00001d044441-5' (ATP-ε) F GAAGGTCCATTTCTCCATC 229 59.1 77
R ATTCATCGGATTCTGTGC 305 58.9
Zm00001d044441-3' (ATP-ε) F AGTCATGTGAACATCATGG 479 59.0 84
R TAAGGACCAGACATAGAATCT 562 59.2
Zm00001d010159 (Actin1) F GAACTGCCATGATAAGGTTA 59.0 194
R GGTGACGAATATACGAGTG 59.0

Fig. 9

Detection of mRNA integrity of ATP synthase subunits during aging Bars superscripted by different lowercase letters are significantly different at the 0.05 probability level."

Fig. 10

Detection of mRNA integrity of ATP synthase subunits in different organs of embryo Different lowercase letters indicate significant difference among different aging treatments of the same organ."

Fig. 11

An assumption of maize seed deterioration model"

[1] Walters C, Ballesteros D, Vertucci V A. Structural mechanics of seed deterioration: standing the test of time. Plant Sci, 2010, 179: 565-573.
doi: 10.1016/j.plantsci.2010.06.016
[2] Ballesteros D, Walters C. Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. Plant J, 2011, 68: 607-619.
doi: 10.1111/j.1365-313X.2011.04711.x
[3] Harman D. Aging: a theory based on free radical and radiation chemistry. Biol Sci Med Sci, 1956, 11: 298-300.
[4] Pukacka S, Ratajczak E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desiccation of recalcitrant Acer saccharinum seeds. J Plant Physiol, 2006, 163: 1259-1266.
doi: 10.1016/j.jplph.2005.10.003
[5] Roach T, Beckett R P, Minibayeva F V, Colville L, Whitaker C, Chen H Y, Bailly C, Kranner I. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ, 2010, 33: 59-75.
[6] Ratajczak E, Maecka A, Ciereszko I, Staszak A. Mitochondria are important determinants of the aging of seeds. Int J Mol Sci, 2019, 20: 1568.
doi: 10.3390/ijms20071568
[7] Rhoads D M, Umbach A L, Subbaiah C C, Siedow J N. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol, 2006, 141: 357-366.
pmid: 16760488
[8] Xin X, Lin X H, Zhou Y C, Chen X L, Liu X, Lu X X. Proteome analysis of maize seeds: the effect of artificial ageing. Physiol Plant, 2011, 143: 126-138.
doi: 10.1016/S0176-1617(11)82112-7
[9] Li Y, Wang Y, Xue H, Pritchard H W, Wang X. Changes in the mitochondrial protein profile due to ROS eruption during ageing of elm (Ulmus pumila L.) seeds. Plant Physiol Biochem, 2017, 114: 72-87.
doi: 10.1016/j.plaphy.2017.02.023
[10] Beatriz F M, Ilse K, San S M, Unai A, Manuel L J, Luis V J, Pritchard H W, Jayanthi N, Fátima M, María B J. Evidence for the absence of enzymatic reactions in the glassy state: a case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. J Exp Bot, 2013: 3033-3043.
[11] Chen H, Osuna D, Colville L, Lorenzo O, Graeber K, Küster H, Kranner I. Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLoS One, 2013, 8: e78471.
doi: 10.1371/journal.pone.0078471
[12] Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after- ripening. Plant Cell, 2011, 23: 2196-2208.
doi: 10.1105/tpc.111.086694
[13] 杨伟飞, 张景龙, 吕伟增, 曹广灿, 陈军营. 人工劣变处理对玉米种胚差异基因表达的影响. 中国农业科学, 2014, 10: 1878-1893.
Yang W F, Zhang J L, Lyu W Z, Cao G C, Chen J Y. Study on the differential genes expression in maize embryo treated by a controlled deterioration treatment. Sci Agric Sin, 2014, 10: 1878-1893. (in Chinese with English abstract)
[14] ISTA. 国际种子检验规程. 北京: 中国农业出版社, 1996. pp 187-188.
ISTA. International Rules for Seed Testing. Beijing: China Agriculture Press, 1996. pp 187-188. (in Chinese)
[15] 胡晋. 对种子活力测定方法--TTC定量法的改进. 种子, 1986, (增刊1): 73-74.
Hu J. Improvement of TTC quantitative method for determination of seed vigor. Seed, 1986, (S1): 73-74. (in Chinese)
[16] 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2003.
Zhang Z L. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2003. (in Chinese)
[17] 李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进. 云南植物研究, 2005, 27(2): 211-216.
Li Z G, Gong M. Improvement of determination method of superoxide anion radical in plants. Acta Bot Yunnan, 2005, 27(2): 211-216. (in Chinese with English abstract)
[18] 马春花, 铁轶, 付汉江, 刘斌, 邢瑞云, 朱捷, 丁勇, 郑晓飞. mRNA氧化损伤检测方法的优化及p53 mRNA氧化损伤分析. 军事医学, 2013, 37(3): 180-183.
Ma C H, Tie Y, Fu J H, Liu B, Xing R Y, Zhu J, Ding Y, Zheng X F. Optimization of method to detect mRNA oxidative damage and quantification of p53 mRNA oxidative damage. Milit Med Sci, 2013, 37(3): 180-183. (in Chinese with English abstract)
[19] Basak O, Demir I, Mavi K, Matthews S. Controlled deterioration test for predicting seedling emergence and longevity of pepper (Capsicum annuum L.) seed lot. Seed Sci Technol, 2006, 34: 701-712.
doi: 10.15258/sst.2006.34.3.16
[20] Wang Y, Li Y, Xue H, Pritchard H W, Wang X. Reactive oxygen species provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. Plant J, 2015, 81: 438-452.
doi: 10.1111/tpj.12737
[21] Fleming M B, Richards C M, Christina W. Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J Exp Bot, 2017, 68: 2219-2230.
doi: 10.1093/jxb/erx100
[22] Bewley J D, Black M. Seeds:Physiology of Development and Germination. New York and London: Plenum Press, 1994.
[23] Bailly C, El-Maarouf-Bouteau H, Corbineau F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comp Rendus Biol, 2008, 331: 806-814.
[24] Rajjou L, Lovigny Y, Groot S, Belghazi M, Job J D. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol, 2008, 148: 620-641.
doi: 10.1104/pp.108.123141 pmid: 18599647
[25] Yin G K, Xin X, Song C, Chen X, Zhang J, Wu S, Li R, Liu X, Lu X. Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. Plant Physiol Biochem, 2014, 80: 1-9.
doi: 10.1016/j.plaphy.2014.03.006
[26] Ratajczak E, Maecka A, Bagniewska Z A, Kalemba E M. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. J Plant Physiol, 2015, 174: 147-156.
doi: 10.1016/j.jplph.2014.08.021
[27] Wang X F, Jing X M, Lin J. Starch mobilization in ultradried seed of maize (Zea mays L.) during germination. J Integr Plant Biol, 2005, 47: 443-451.
doi: 10.1111/j.1744-7909.2005.00088.x
[28] Benamar A, Rolletschek H, Borisjuk L, Avelange-Macherel M H, Curien G, Mostefai H A. Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochim Biophys Acta, 2008, 1777: 1268-1275.
[29] Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol, 2007, 292: 670-686.
[30] Werner K. Structure and function of mitochondrial membrane protein complexes. BMC Biol, 2015, 13: 89.
doi: 10.1186/s12915-015-0201-x
[31] Marcus A, Feeley J. Activation of protein synthesis in the imbibition phase of seed germination. Proc Natl Acad Sci USA, 1964, 51: 1075-1079.
doi: 10.1073/pnas.51.6.1075
[32] Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565
[33] Kong Q, Lin C L. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol Life Sci, 2010, 67: 1817-1829.
doi: 10.1007/s00018-010-0277-y
[34] Shcherbik N, Pestov D G. The impact of oxidative stress on ribosomes: from injury to regulation. Cells, 2019, 8: 1379.
doi: 10.3390/cells8111379
[35] Schmidt M, Luff M, Mollwo A, Kaminski M, Mittag M, Kreimer G. Evidence for a specialized localization of the chloroplast ATP-synthase subunits alpha, beta, and gamma in the eyespot apparatus of Chlamydomonas reinhardtii (Chlorophyceae). J Phycol, 2011, 43: 284-294.
doi: 10.1111/j.1529-8817.2007.00331.x
[36] Wang C, Chen Z, Li S, Zhang Y, Jia S, Li J, Chi Y, Miao Y, Guan Y, Yang J. Hepatic overexpression of ATP synthase β subunit activates PI3K/Akt pathway to ameliorate hyperglycemia of diabetic mice. Diabetes, 2014, 63: 947-959.
doi: 10.2337/db13-1096
[37] Lee T, Paul R, Langlais N, Hoffman L, Roust C. Mitochondrial ATP synthase beta subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity. Exp Physiol, 2019, 104: 126-135.
doi: 10.1113/EP087278
[38] Shirakihara Y, Shiratori A, Tanikawa H, Nakasako M, Suzuki T. Structure of a thermophilic F1-ATPase inhibited by an ε-subunit: deeper insight into the ε-inhibition mechanism. FEBS J, 2015, 282: 2895-2913.
doi: 10.1111/febs.13329 pmid: 26032434
[39] Sun J, Hu H, Li Y, Wang L, Zhou Q, Huang X. Effects and mechanism of acid rain on plant chloroplast ATP synthase. Environ Sci Pollut Res, 2016, 23: 18296-18306.
doi: 10.1007/s11356-016-7016-3
[1] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[2] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .