Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2007-2015.doi: 10.3724/SP.J.1006.2022.12030
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XIA Xiu-Zhong1,**(), ZHANG Zong-Qiong1,**(), YANG Xing-Hai1, ZHUANG Jie1, ZENG Yu2, DENG Guo-Fu2, SONG Guo-Xian3, HUANG Yu-Xiao3, NONG Bao-Xuang1,*(), LI Dan-Ting1,*()
[1] | FAO I. Status of the World's Soil Resources (SWSR): Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, 2015. |
[2] | 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43: 474-479. |
Zhu D F, Cheng S H, Zhang Y B, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world. Sci Agric Sin, 2010, 43: 474-479. (in Chinese with English abstract) | |
[3] |
Zeng L, Shannon M C. Salinity effects on seedling growth and yield components of rice. Crop Sci, 2000, 40: 996-1003.
doi: 10.2135/cropsci2000.404996x |
[4] | 王遵亲. 中国盐渍土. 北京: 科学出版社, 1993. p 1. |
Wang Z Q. China Saline Soil. Beijing: Science Press, 1993. p 1. (in Chinese) | |
[5] |
Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed, 2010, 127: 256-261.
doi: 10.1111/j.1439-0523.2007.01455.x |
[6] | 李丹婷, 农保选, 夏秀忠, 曾宇, 刘开强, 刘义明, 林竞鸿, 杨显志, 韩龙植, 张辉, 邓国富. 广西沿海受旱与咸酸田面积的分布与抗旱、耐盐种质资源鉴定. 植物遗传资源学报, 2014, 15: 12-17. |
Li D T, Nong B X, Xia X Z, Zeng Yu, Liu K Q, Liu Y M, Lin J H, Yang X Z, Han L Z, Zhang H, Deng G F. Distribution of drought disaster area, acid paddy soil area and evaluation of drought resistance, salt tolerance crop resources in Guangxi coastal area. J Plant Genet Resour, 2014, 15: 12-17. (in Chinese with English abstract) | |
[7] | 应存山. 中国稻种资源. 北京: 中国农业科技出版社, 1993. pp 223-231. |
Ying C S. Rice Germplasm Resources in China. Beijing: China Agricultural Science and Technology Press, 1993. pp 223-231. (in Chinese) | |
[8] |
Batayeva D, Labaco B, Ye C, Li X, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H. Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet, 2018, 19: 2.
doi: 10.1186/s12863-017-0590-7 pmid: 29298667 |
[9] |
Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G H, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32-39.
doi: 10.1038/ng.1018 |
[10] |
Kumar V, Singh A, Mithra S V, Krishnamurthy S L, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S K, Khurana J P, Singh N K, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res, 2015, 22: 133-145.
doi: 10.1093/dnares/dsu046 |
[11] | Nayyeripasand L, Garoosi G A, Ahmadikhah A. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice (New York), 2021, 14: 9. |
[12] |
Shi Y Y, Gao L L, Wu Z C, Zhang X J, Wang M M, Zhang C S, Zhang F, Zhou Y L, Li Z K. Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol, 2017, 17: 92.
doi: 10.1186/s12870-017-1044-0 |
[13] |
Yu J, Zhao W G, Tong W, He Q, Yoon M Y, Li F P, Choi B, Heo E B, Kim K W, Park Y J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. Int J Mol Sci, 2018, 19: 3145.
doi: 10.3390/ijms19103145 |
[14] | 胡时开, 陶红剑, 钱前, 郭龙彪. 水稻耐盐性的遗传和分子育种的研究. 分子植物育种, 2010, 8: 629-640. |
Hu S K, Tao H J, Qian Q, Guo L B. Progresses on genetics and molecular breeding for salt-tolerance in rice. Mol Plant Breed, 2010, 8: 629-640. (in Chinese with English abstract) | |
[15] | 井文, 章文华. 水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展. 中国水稻科学, 2017, 31: 111-123. |
Jing W, Zhang W H. Research progress on gene mapping and cloning for salt tolerance and variety improvement for salt tolerance by molecular marker-assisted selection in rice. Chin J Rice Sci, 2017, 31: 111-123. (in Chinese with English abstract) | |
[16] |
Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 2001, 231: 243-254.
doi: 10.1023/A:1010378409663 |
[17] |
Rehman S, Harris P, Bourne W F, Wilkin J. The relationship between ions, vigour and salinity tolerance of acacia seeds. Plant Soil, 2000, 220: 229-233.
doi: 10.1023/A:1004701231183 |
[18] |
Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Ning G, Ma C X, Zeng H P. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700 |
[19] | 李丹婷, 夏秀忠, 农保选, 刘开强, 张宗琼, 梁耀懋. 广西地方稻种资源核心种质构建和遗传多样性分析. 广西植物, 2012, 32(1): 94-100. |
Li D T, Xia X Z, Nong B X, Liu K Q, Zhang Z Q, Liang Y M. Construction of core collection and genetic diversity of landrace rice resources (Oryza sativa) in Guangxi. Guihaia, 2012, 32(1): 94-100. (in Chinese with English abstract) | |
[20] |
杨行海, 农保选, 夏秀忠, 张宗琼, 曾宇, 刘开强, 邓国富, 李丹婷. 水稻糯性相关基因的全基因组关联分析. 植物学报, 2016, 51: 737-742.
doi: 10.11983/CBB15204 |
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Genome-wide association study of genes related to waxiness in Oryza sativa. Chin Bull Bot, 2016, 51: 737-742. (in Chinese with English abstract) | |
[21] |
Yang X H, Xia X Z, Zeng Y, Nong B X, Zhang Z Q, Wu Y Y, Xiong F Q, Zhang Y X, Liang H F, Deng G F, Li D T. Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS One, 2018, 13: e0196690.
doi: 10.1371/journal.pone.0196690 |
[22] |
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Rapid identification of a new gene influencing low amylose content in rice landraces (Oryza sativa L.) using genome-wide association study with specific-locus amplified fragment sequencing. Genome, 2017, 60: 465-472.
doi: 10.1139/gen-2016-0104 |
[23] |
Li M, Guo L J, Guo C M, Wang L J, Chen L. Over-expression of a DUF1644 protein gene, SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol, 2016, 59: 62-73.
doi: 10.1007/s12374-016-0180-7 |
[24] |
Liu D F, Chen X J, Liu J Q, Ye J J, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
doi: 10.1093/jxb/ers079 |
[25] | Hong Y B, Zhang H J, Lei H, Li D Y, Song F M. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci, 2016, 7: 4. |
[26] |
Alam M M, Tanaka T, Nakamura H, Ichikawa H, Kobayashi K, Yaeno T, Yamaoka N, Shimomoto K, Takayama K, Nishina H, Nishiguchi M. Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J, 2015, 13: 85-96.
doi: 10.1111/pbi.12239 |
[27] |
Wang H, Zhang M S, Guo R, Shi D C, Liu B, Lin X Y, Yang C W. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 194.
doi: 10.1186/1471-2229-12-194 |
[28] |
Shen Y, Shen L K, Shen Z X, Jing W, Ge H L, Zhao J Z, Zhang W H. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 2016, 38: 2766-2779.
doi: 10.1111/pce.12586 |
[29] |
Luo H, Song F, Goodman R M, Zheng Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol, 2005, 7: 459-468.
doi: 10.1055/s-2005-865851 |
[30] |
Lee S C, Han S K, Kim S R. Salt- and ABA-inducible OsGASR1 is involved in salt tolerance. J Plant Biol, 2015, 58: 96-101.
doi: 10.1007/s12374-014-0497-z |
[31] |
Chen G, Hu Q D, Luo L, Yang T Y, Zhang S, Hu Y B, Yu L, Xu G H. Rice potassium transporter OsHAK1 is essential for maintaining potassium‐mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ, 2015, 38: 2747-2765.
doi: 10.1111/pce.12585 |
[32] |
Tang W, Sun J Q, Liu J, Liu F F, Yan J, Gou X J, Lu B R, Liu Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol, 2014, 86: 443-454.
doi: 10.1007/s11103-014-0239-0 pmid: 25150410 |
[33] |
Lima M Y, Carvalho F E L, Martins M O, Passaia G, Sousa R H V, Neto M C L, Margis P M, Silveira J A G. Mitochondrial GPX 1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. J Integr Plant Biol, 2016, 58: 737-748.
doi: 10.1111/jipb.12464 |
[34] |
Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San S B, Guiderdoni E, Schippers J H M. Salt-responsive ERF 1 regulates reactive oxygen species- dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131.
doi: 10.1105/tpc.113.113068 |
[35] |
Ouyang S Q, Liu Y F, Liu P, Lei G, Chen S Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316-329.
doi: 10.1111/j.1365-313X.2010.04146.x |
[36] |
Ye W J, Hu S K, Wu L W, Ge C G, Cui Y T, Chen P, Wang X Q, Xu J, Ren D Y, Dong G J, Quan Q, Guo L B. White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Mol Breed, 2016, 36: 57.
doi: 10.1007/s11032-016-0479-6 |
[37] |
Elide F, Cristina S, Giorgio P, Samantha R, Elisabetta B, Elena B, Enrico L, Piergiorgio S, Attilio S G, Paolo F. Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci, 2018, 9: 204.
doi: 10.3389/fpls.2018.00204 |
[38] | 李佳锐, 郑洪亮, 张萃雯, 刘化龙, 王敬国, 孙健, 李宁, 雷蕾, 李宪伟, 邹德堂. 盐碱胁迫下水稻苗期地上部Na+, K+浓度的QTL分析. 华北农学报, 2020, 35(2): 35-42. |
Li J R, Zheng H L, Zhang C W, Liu H L, Wang J G, Sun J, Li N, Lei L, Li X W, Zou D T, Zheng H L. QTL analysis of Na+ and K+ concentrations in rice seedling under salt and alkaline stress. Acta Agric Boreali-Sin, 2020, 35(2): 35-42. (in Chinese with English abstract) | |
[39] | 索艺宁, 张春可, 于乔乔, 张恩源, 谢冬微, 冷月, 王亮, 孙健. 盐,碱胁迫下水稻苗期根数和根长的QTL分析. 华北农学报, 2018, 33(5): 9-15. |
Suo Y N, Zhang C K, Yu Q Q, Zhang E Y, Xie D W, Leng Y, Wang L, Sun J. QTL analysis of root number and root length in rice seedling stage under salt and alkali stress. Acta Agric Boreali-Sin, 2018, 33(5): 9-15. (in Chinese with English abstract) | |
[40] | 王奉斌, 张燕红, 文孝荣, 袁杰, 布哈丽且木·阿布力孜, 朱小霞, 瞿毅. 两个粳稻材料芽期和苗期耐盐性的QTL定位. 新疆农业科学, 2012, 48: 2205-2210. |
Wang F B, Zhang Y H, Wen X R, Yuan J, Buhaliqiemu A, Zhu X X, Qu Y. QTLs mapping for salt tolerance at seed germination and seedling stage in Xinxiang rice (Oryza sativa L.). Xinjiang Agric Sci, 2011, 48: 2205-2210. (in Chinese with English abstract) |
[1] | BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079. |
[2] | WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133. |
[3] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[4] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[5] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[6] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[7] | WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746. |
[8] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[9] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[10] | HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379. |
[11] | LI Zhen-Hua, WANG Xian-Ya, LIU Yi-Ling, ZHAO Jie-Hong. NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. [J]. Acta Agronomica Sinica, 2022, 48(1): 99-107. |
[12] | XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778. |
[13] | HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840. |
[14] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[15] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
|