Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2007-2015.doi: 10.3724/SP.J.1006.2022.12030

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China

XIA Xiu-Zhong1,**(), ZHANG Zong-Qiong1,**(), YANG Xing-Hai1, ZHUANG Jie1, ZENG Yu2, DENG Guo-Fu2, SONG Guo-Xian3, HUANG Yu-Xiao3, NONG Bao-Xuang1,*(), LI Dan-Ting1,*()   

  1. 1Rice Research Institute, Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, Guangxi, China
    2Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
    3Qinzhou Institute of Agricultural Sciences, Qinzhou 535000, Guangxi, China
  • Received:2021-04-26 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-24
  • Contact: NONG Bao-Xuang,LI Dan-Ting E-mail:xiaxiuzhong@163.com;zhangzongqiong@gxaas.net;nongbaoxuan88@gxaas.net;ricegl@163.com
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    Open Project Program of State Key Laboratory of Rice Biology(170102);Opening Project of Major Science and Technology Innovation Base for Guangxi(2018-05-Z06-CX04);Development Fund of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021JM07);Development Fund of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021JM49);Special Funds of Basic Scientific Research Foundation of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2021YT030)

Abstract:

Rice is a salt-sensitive crop, and salt stress can cause significant reduction in rice yield. China's total saline area is large and growing rapidly. Therefore, it is necessary to screen for the salt-tolerant rice germplasm and cultivate these varieties. In this study, we evaluated the relative salt damage rate of 419 core germplasm of Guangxi rice landraces at seed germination stage under 1.5% NaCl salt stress, and identified the salt-tolerant loci by whole-genome association analysis. The results showed that the average germination rate under salt stress was 57.67%, which was significantly 92.55% lower than that of control group, and the Shapiro-Wilk test (0.9301) found that the distribution did not conform to normal distribution. Based on 208,993 SNP markers, 419 core germplasm was divided into 6 subgroups. We used general linear model (GLM) and mixed linear model (MLM) analysis to identify 129 and 1 significantly associated SNPs, respectively, which were distributed on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, and 12. Among the 14 regions that were significantly associated with rice salt tolerance, 13 regions overlapped with previously identified or cloned salt tolerance genes. The significantly associated region Chr. 8:10,564,948-10,733,175 was reported for the first time and named qGR8. There were 53 genes in qGR8 region, 34 of which were compared with transcriptome data to obtain the expression profiles. We compared the expression profiles and speculated that LOC_Os08g17370 was a candidate gene. This gene is a member of transmembrane 9 superfamily and is up-regulated in roots and leaves of salt-tolerant parent. Thus, this gene might be a novel salt-tolerant gene in qGR8 region at germination stage in rice. These results lay a foundation for cloning new genes of salt-tolerant and provide new genetic resources for breeding salt-tolerant rice varieties.

Key words: Oryza sativa L., core germplasm, germination, salt tolerance, genome-wide association study

Fig. 1

Salt tolerance of 419 core rice germplasm at germination stage **: P<0.01."

Fig. 2

Linkage disequilibrium plot"

Fig. 3

Genome-wide association analysis (GWAS) of seed germination in Manhattan and QQ plot (a) and (b) GWAS using the GLM, (c) and (d) GWAS using the MLM, X axis indicates physically mapped chromosomes. Y axis indicates significance as calculated by -log10 (P), (a) and (c) Manhattan plots, The horizontal dashed line indicates the genome-wide significance threshold (P= 4.78E-07); (b) and (d) quantile-quantile (Q-Q) plot, X axis represents expected null distribution of P-values, Y axis represent observed distribution of P-values."

Table 1

Transcriptional abundance of 34 genes at germination stage"

基因名称
Gene ID
转录丰度
Transcript abundances
描述
Description
LOC_Os08g17160 高High Plastocyanin-like domain containing protein, putative, expressed
LOC_Os08g17294 高High PSF3-Putative GINS complex subunit, expressed
LOC_Os08g17320 高High Protein kinase family protein, putative, expressed
LOC_Os08g17370 高High Transmembrane 9 superfamily member, putative, expressed
LOC_Os08g17410 高High BRASSINOSTEROID INSENSITIVE 1 precursor, putative, expressed
LOC_Os08g17510 高High Sulfotransferase domain containing protein, expressed
LOC_Os08g17600 高High SNARE domain containing protein, putative, expressed
LOC_Os08g17610 高High Expressed protein
LOC_Os08g17650 高High LYR motif containing protein, putative, expressed
LOC_Os08g17680 高High Stromal cell-drived factor 2-like protein precursor, putative, expressed
LOC_Os08g17150 低Low Expressed protein
LOC_Os08g17390 低Low Expressed protein
LOC_Os08g17400 低Low WRKY89, expressed
LOC_Os08g17430 低Low Expressed protein
LOC_Os08g17450 低Low Retrotransposon protein, putative, undassified, expressed
LOC_Os08g17500 低Low CinnamoyI-CoA reductase, putative, expressed
LOC_Os08g17520 低Low Flavanol sulfotransferase-like, putative, expressed
LOC_Os08g17655 低Low Expressed protein
LOC_Os08g17110 无No Expressed protein
LOC_Os08g17120 无No Transposon protein, putative, CACTA En/Spm sub-dass
LOC_Os08g17210 无No Transposon protein, putative, CACTA En/Spm sub-dass
LOC_Os08g17220 无No Uncharacterized PE-PGRS family protein PE PGRS54 precursor, putative, expressed
LOC_Os08g17270 无No Expressed protein
LOC_Os08g17330 无No Expressed protein
LOC_Os08g17340 无No Hypothetical protein
LOC_Os08g17350 无No Expressed protein
LOC_Os08g17360 无No Hypothetical protein
LOC_Os08g17440 无No Expressed protein
LOC_Os08g17560 无No Expressed protein
LOC_Os08g17580 无No Hypothetical protein
LOC_Os08g17620 无No Expressed protein
LOC_Os08g17630 无No Expressed protein
LOC_Os08g17640 无No Z0S8-02-C2H2 zinc finger protein, expressed
LOC_Os08g17690 无No Retrotransposon protein, putative, unclassified

Fig. 4

Relative expression patterns of candidate genes at various developmental stages (a) response to seed imbibition of 34 genes; (b) base on mRNA-seq data and Affymetrix microarray datasets from GENEVESTIGATOR, and the ‘OS-nnnnn' refers to the experiments ID; (c) detailed view of selected perturbations (absolute expression levels). "

Table 2

14 Associated QTLs and candidate genes related to salt tolerance at germination stage"

QTL SNP数量
Number of SNPs
范围
Range
峰值SNP
Peak SNP
P
P-value
候选基因
Candidate gene
基因描述
Gene description
qGR1.1 2 23,752,956-23,786,838 23,752,956 2.33E-08 SIDP361[23] DUF1644蛋白
DUF1644 protein gene
qGR1.2 6 31,534,965-31,593,365 31,534,965 1.09E-07 OsERF922[24] ERF转录因子
ERF transcription factor
qGR3.1 3 1,874,033-1,874,036 1,874,033 2.22E-07 ONAC022[25] 胁迫响应型NAC转录因子基因
Overexpression of a stress-responsive NAC
qGR3.2 16 16,671,741-17,432,153 16,671,952 2.81E-10 OsHAP2E[26] 血红素激活蛋白; 核因子Y; CCAAT结合因子
Heme activator protein gene; nuclear factor Y; CCAAT binding factor
qGR3.3 2 20,621,667-20,925,341 20,621,667 2.00E-07 OsHAK16[27,28] 钾转运蛋白
Potassium transporter
qGR3.4 3 26,339,090-26,393,672 26,339,090 2.89E-09 OsBIHD1[29] 同源异型基因
Rice homeodomain gene
qGR3.5 5 31,937,083-32,488,239 31,982,396 1.32E-10 OsGASR1[30] 赤霉素刺激转录基因
GA-stimulated transcript-related gene; Oryza sativa gibberellic acid stimulated rice 1
qGR4.1 5 17,564,210-19,871,791 17,626,425 8.53E-08 OsHAK1[31] 钾离子转运蛋白
Potassium transporter
qGR4.2 5 24,215,216-24,282,470 24,282,470 2.26E-08 OsBADH1[32] 甜菜碱醛脱氢酶
Betaine aldehyde dehydrogenase
qGR4.3 43 27,473,283-27,958,451 27,907,711 9.60E-13 OsGPX1[33] 线粒体谷胱甘肽过氧化物酶
Mitochondrial glutathione peroxidase
qGR5 9 19,208,151-19,330,003 19,329,999 7.44E-08 SERF1[34] 盐应答的ERF转录因子
Salt-responsive ERF 1
qGR6 12 1,607,061-1,822,395 1,661,829 1.07E-09 OsSIK1[35] 类受体激酶基因; 胁迫诱导的蛋白激酶基因
Receptor-like kinase; stress-induced protein kinase gene 1
qGR8 4 10,564,948-10,733,175 10,564,948 4.24E-08 New gene 未知
Unknown
qGR12 3 21,374,803-22,039,414 21,374,803 7.63E-08 WSL12[36] 白色条纹叶基因
White stripe leaf 12
[1] FAO I. Status of the World's Soil Resources (SWSR): Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils. Rome, 2015.
[2] 朱德峰, 程式华, 张玉屏, 林贤青, 陈惠哲. 全球水稻生产现状与制约因素分析. 中国农业科学, 2010, 43: 474-479.
Zhu D F, Cheng S H, Zhang Y B, Lin X Q, Chen H Z. Analysis of status and constraints of rice production in the world. Sci Agric Sin, 2010, 43: 474-479. (in Chinese with English abstract)
[3] Zeng L, Shannon M C. Salinity effects on seedling growth and yield components of rice. Crop Sci, 2000, 40: 996-1003.
doi: 10.2135/cropsci2000.404996x
[4] 王遵亲. 中国盐渍土. 北京: 科学出版社, 1993. p 1.
Wang Z Q. China Saline Soil. Beijing: Science Press, 1993. p 1. (in Chinese)
[5] Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed, 2010, 127: 256-261.
doi: 10.1111/j.1439-0523.2007.01455.x
[6] 李丹婷, 农保选, 夏秀忠, 曾宇, 刘开强, 刘义明, 林竞鸿, 杨显志, 韩龙植, 张辉, 邓国富. 广西沿海受旱与咸酸田面积的分布与抗旱、耐盐种质资源鉴定. 植物遗传资源学报, 2014, 15: 12-17.
Li D T, Nong B X, Xia X Z, Zeng Yu, Liu K Q, Liu Y M, Lin J H, Yang X Z, Han L Z, Zhang H, Deng G F. Distribution of drought disaster area, acid paddy soil area and evaluation of drought resistance, salt tolerance crop resources in Guangxi coastal area. J Plant Genet Resour, 2014, 15: 12-17. (in Chinese with English abstract)
[7] 应存山. 中国稻种资源. 北京: 中国农业科技出版社, 1993. pp 223-231.
Ying C S. Rice Germplasm Resources in China. Beijing: China Agricultural Science and Technology Press, 1993. pp 223-231. (in Chinese)
[8] Batayeva D, Labaco B, Ye C, Li X, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H. Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet, 2018, 19: 2.
doi: 10.1186/s12863-017-0590-7 pmid: 29298667
[9] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G H, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2011, 44: 32-39.
doi: 10.1038/ng.1018
[10] Kumar V, Singh A, Mithra S V, Krishnamurthy S L, Parida S K, Jain S, Tiwari K K, Kumar P, Rao A R, Sharma S K, Khurana J P, Singh N K, Mohapatra T. Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res, 2015, 22: 133-145.
doi: 10.1093/dnares/dsu046
[11] Nayyeripasand L, Garoosi G A, Ahmadikhah A. Genome-wide association study (GWAS) to identify salt-tolerance QTLs carrying novel candidate genes in rice during early vegetative stage. Rice (New York), 2021, 14: 9.
[12] Shi Y Y, Gao L L, Wu Z C, Zhang X J, Wang M M, Zhang C S, Zhang F, Zhou Y L, Li Z K. Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol, 2017, 17: 92.
doi: 10.1186/s12870-017-1044-0
[13] Yu J, Zhao W G, Tong W, He Q, Yoon M Y, Li F P, Choi B, Heo E B, Kim K W, Park Y J. A genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. Int J Mol Sci, 2018, 19: 3145.
doi: 10.3390/ijms19103145
[14] 胡时开, 陶红剑, 钱前, 郭龙彪. 水稻耐盐性的遗传和分子育种的研究. 分子植物育种, 2010, 8: 629-640.
Hu S K, Tao H J, Qian Q, Guo L B. Progresses on genetics and molecular breeding for salt-tolerance in rice. Mol Plant Breed, 2010, 8: 629-640. (in Chinese with English abstract)
[15] 井文, 章文华. 水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展. 中国水稻科学, 2017, 31: 111-123.
Jing W, Zhang W H. Research progress on gene mapping and cloning for salt tolerance and variety improvement for salt tolerance by molecular marker-assisted selection in rice. Chin J Rice Sci, 2017, 31: 111-123. (in Chinese with English abstract)
[16] Almansouri M, Kinet J M, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 2001, 231: 243-254.
doi: 10.1023/A:1010378409663
[17] Rehman S, Harris P, Bourne W F, Wilkin J. The relationship between ions, vigour and salinity tolerance of acacia seeds. Plant Soil, 2000, 220: 229-233.
doi: 10.1023/A:1004701231183
[18] Sun X W, Liu D Y, Zhang X F, Li W B, Liu H, Hong W G, Jiang C B, Ning G, Ma C X, Zeng H P. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One, 2013, 8: e58700.
doi: 10.1371/journal.pone.0058700
[19] 李丹婷, 夏秀忠, 农保选, 刘开强, 张宗琼, 梁耀懋. 广西地方稻种资源核心种质构建和遗传多样性分析. 广西植物, 2012, 32(1): 94-100.
Li D T, Xia X Z, Nong B X, Liu K Q, Zhang Z Q, Liang Y M. Construction of core collection and genetic diversity of landrace rice resources (Oryza sativa) in Guangxi. Guihaia, 2012, 32(1): 94-100. (in Chinese with English abstract)
[20] 杨行海, 农保选, 夏秀忠, 张宗琼, 曾宇, 刘开强, 邓国富, 李丹婷. 水稻糯性相关基因的全基因组关联分析. 植物学报, 2016, 51: 737-742.
doi: 10.11983/CBB15204
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Genome-wide association study of genes related to waxiness in Oryza sativa. Chin Bull Bot, 2016, 51: 737-742. (in Chinese with English abstract)
[21] Yang X H, Xia X Z, Zeng Y, Nong B X, Zhang Z Q, Wu Y Y, Xiong F Q, Zhang Y X, Liang H F, Deng G F, Li D T. Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS One, 2018, 13: e0196690.
doi: 10.1371/journal.pone.0196690
[22] Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Rapid identification of a new gene influencing low amylose content in rice landraces (Oryza sativa L.) using genome-wide association study with specific-locus amplified fragment sequencing. Genome, 2017, 60: 465-472.
doi: 10.1139/gen-2016-0104
[23] Li M, Guo L J, Guo C M, Wang L J, Chen L. Over-expression of a DUF1644 protein gene, SIDP361, enhances tolerance to salt stress in transgenic rice. J Plant Biol, 2016, 59: 62-73.
doi: 10.1007/s12374-016-0180-7
[24] Liu D F, Chen X J, Liu J Q, Ye J J, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
doi: 10.1093/jxb/ers079
[25] Hong Y B, Zhang H J, Lei H, Li D Y, Song F M. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci, 2016, 7: 4.
[26] Alam M M, Tanaka T, Nakamura H, Ichikawa H, Kobayashi K, Yaeno T, Yamaoka N, Shimomoto K, Takayama K, Nishina H, Nishiguchi M. Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J, 2015, 13: 85-96.
doi: 10.1111/pbi.12239
[27] Wang H, Zhang M S, Guo R, Shi D C, Liu B, Lin X Y, Yang C W. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 194.
doi: 10.1186/1471-2229-12-194
[28] Shen Y, Shen L K, Shen Z X, Jing W, Ge H L, Zhao J Z, Zhang W H. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 2016, 38: 2766-2779.
doi: 10.1111/pce.12586
[29] Luo H, Song F, Goodman R M, Zheng Z. Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol, 2005, 7: 459-468.
doi: 10.1055/s-2005-865851
[30] Lee S C, Han S K, Kim S R. Salt- and ABA-inducible OsGASR1 is involved in salt tolerance. J Plant Biol, 2015, 58: 96-101.
doi: 10.1007/s12374-014-0497-z
[31] Chen G, Hu Q D, Luo L, Yang T Y, Zhang S, Hu Y B, Yu L, Xu G H. Rice potassium transporter OsHAK1 is essential for maintaining potassium‐mediated growth and functions in salt tolerance over low and high potassium concentration ranges. Plant Cell Environ, 2015, 38: 2747-2765.
doi: 10.1111/pce.12585
[32] Tang W, Sun J Q, Liu J, Liu F F, Yan J, Gou X J, Lu B R, Liu Y S. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol, 2014, 86: 443-454.
doi: 10.1007/s11103-014-0239-0 pmid: 25150410
[33] Lima M Y, Carvalho F E L, Martins M O, Passaia G, Sousa R H V, Neto M C L, Margis P M, Silveira J A G. Mitochondrial GPX 1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants. J Integr Plant Biol, 2016, 58: 737-748.
doi: 10.1111/jipb.12464
[34] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San S B, Guiderdoni E, Schippers J H M. Salt-responsive ERF 1 regulates reactive oxygen species- dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25: 2115-2131.
doi: 10.1105/tpc.113.113068
[35] Ouyang S Q, Liu Y F, Liu P, Lei G, Chen S Y. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J, 2010, 62: 316-329.
doi: 10.1111/j.1365-313X.2010.04146.x
[36] Ye W J, Hu S K, Wu L W, Ge C G, Cui Y T, Chen P, Wang X Q, Xu J, Ren D Y, Dong G J, Quan Q, Guo L B. White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryza sativa L.). Mol Breed, 2016, 36: 57.
doi: 10.1007/s11032-016-0479-6
[37] Elide F, Cristina S, Giorgio P, Samantha R, Elisabetta B, Elena B, Enrico L, Piergiorgio S, Attilio S G, Paolo F. Transcriptome and cell physiological analyses in different rice cultivars provide new insights into adaptive and salinity stress responses. Front Plant Sci, 2018, 9: 204.
doi: 10.3389/fpls.2018.00204
[38] 李佳锐, 郑洪亮, 张萃雯, 刘化龙, 王敬国, 孙健, 李宁, 雷蕾, 李宪伟, 邹德堂. 盐碱胁迫下水稻苗期地上部Na+, K+浓度的QTL分析. 华北农学报, 2020, 35(2): 35-42.
Li J R, Zheng H L, Zhang C W, Liu H L, Wang J G, Sun J, Li N, Lei L, Li X W, Zou D T, Zheng H L. QTL analysis of Na+ and K+ concentrations in rice seedling under salt and alkaline stress. Acta Agric Boreali-Sin, 2020, 35(2): 35-42. (in Chinese with English abstract)
[39] 索艺宁, 张春可, 于乔乔, 张恩源, 谢冬微, 冷月, 王亮, 孙健. 盐,碱胁迫下水稻苗期根数和根长的QTL分析. 华北农学报, 2018, 33(5): 9-15.
Suo Y N, Zhang C K, Yu Q Q, Zhang E Y, Xie D W, Leng Y, Wang L, Sun J. QTL analysis of root number and root length in rice seedling stage under salt and alkali stress. Acta Agric Boreali-Sin, 2018, 33(5): 9-15. (in Chinese with English abstract)
[40] 王奉斌, 张燕红, 文孝荣, 袁杰, 布哈丽且木·阿布力孜, 朱小霞, 瞿毅. 两个粳稻材料芽期和苗期耐盐性的QTL定位. 新疆农业科学, 2012, 48: 2205-2210.
Wang F B, Zhang Y H, Wen X R, Yuan J, Buhaliqiemu A, Zhu X X, Qu Y. QTLs mapping for salt tolerance at seed germination and seedling stage in Xinxiang rice (Oryza sativa L.). Xinjiang Agric Sci, 2011, 48: 2205-2210. (in Chinese with English abstract)
[1] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[2] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[3] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[4] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[5] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[6] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[7] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[8] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[9] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[10] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[11] LI Zhen-Hua, WANG Xian-Ya, LIU Yi-Ling, ZHAO Jie-Hong. NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. [J]. Acta Agronomica Sinica, 2022, 48(1): 99-107.
[12] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[13] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[14] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[15] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[10] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .