Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2016-2027.doi: 10.3724/SP.J.1006.2022.12041

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice

ZHU Chun-Quan1,**(), WEI Qian-Qian1,2,**(), XIANG Xing-Jia2, HU Wen-Jun3, XU Qing-Shan1, CAO Xiao-Chuang1, ZHU Lian-Feng1, KONG Ya-Li1, LIU Jia4, JIN Qian-Yu1, ZHANG Jun-Hua1,*()   

  1. 1State Key Laboratory of Rice Biology / China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
    2Anhui University, Hefei 230039 Anhui, China
    3Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    4Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2021-06-16 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-28
  • Contact: ZHANG Jun-Hua E-mail:zhuchunquan@caas.cn;15955803543@163.com;zhangjunhua@caas.cn
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31901452);Natural Science Foundation of Zhejiang Province(LQ19C020007)

Abstract:

Early rice easily suffers from low temperature injury at seedling raising stage, resulting in yield reduction. Therefore, it is necessary to develop low temperature tolerant rice seedling substrate to ensure early rice production. The fermentation substrate made by ourselves was used in the present study. After melatonin and methyl jasmonate were added in the substrate, the rice was treated with low temperature for 3 days at seed germination stage and 7 days' growth stage. Then, to clarify the regulatory mechanism of these two phytohormones on the tolerance of early rice seedlings to low temperature stress, the germination status, physical and chemical properties, and gene expression of rice were explored. The results showed that both melatonin and methyl jasmonate could significantly improve the seed germination rate and germination potential of rice under low temperature. Both could improve the growth of rice, including plant height, root length, root number, dry matter weight, leaf age, and nutrient content. Under low temperature, melatonin and methyl jasmonate both reduced hydrogen peroxide and malondialdehyde content in rice by regulating the activities of antioxidant system enzymes, so as to alleviate the lipid peroxidation damage caused by low temperature stress. Melatonin and methyl jasmonate both increased the contents of proline and chlorophyll, and decreased the content of abscisic acid in rice under low temperature stress. Methyl jasmonate along increased GA3 content in rice under low temperature conditions. Melatonin and methyl jasmonate had different regulatory effects on cold tolerance genes expression in rice. Both of them significantly up-regulated the relative expression of OsCDPK7 and OsLti6b genes, and down-regulated the expression of OsWRKY45 gene in rice under low temperature conditions. In addition. The relative expression of OsFer1 gene was induced by melatonin alone, while the relative expression of OsTrx23 gene was up-regulated by methyl jasmonate alone in response to low temperature stress. The above results showed that both melatonin and methyl jasmonate could improve the low temperature stress tolerance of rice by regulating the enzyme activity of antioxidant system, osmotic substance content, chlorophyll content, plant hormone content and the expression of cold tolerance genes in rice.

Key words: substrate, rice, low temperature stress, physical and chemical properties, antioxidant enzymes, gene expression

Table 1

Scheme of experimental designs"

处理
Treatment
温度Temperature (℃) 时间Time (h)
白天Day 晚上Night 白天Day 晚上Night
常温N 30 20 12 12
常温+褪黑素N+T 30 20 12 12
常温+茉莉酸甲酯N+M 30 20 12 12
低温L 13 7 12 12
低温+褪黑素L+T 13 7 12 12
低温+茉莉酸甲酯L+M 13 7 12 12

Table 2

Sequence of primers in rice"

基因
Gene
正向引物
Forward sequence (5'-3')
正向引物
Reverse sequence (5'-3')
OsCOLD1 CAGGATATCAAAAGCTTGGATG GCAGCTATCTTTGCTTGACG
OsLti6b GCCTTAAATTGGAGCTCAGTC GTGCAGAAGATAAACTGGAGAA
OsWRKY45 TTCCTTGTTGATGTGTCGTCTCA CCCCCAGCTCATAATCAAGAAC
OsFer1 GAGGAGACTGTGTGAAGGGC ATATTGTTCCTTATTGGCTGCC
OsCDPK7 GAGGAAATCGCTGGGTTGA TTCTCATTGTTCTTCGTCCGA
OsTrx23 AGAACACCATCGTGAAGCAC CTATCTACAAGCTTGCCAGCAT
OsHistone GGTCAACTTGTTGATTCCCCTCT AACCGCAAAATCCAAAGAACG

Table 3

Effects of different treatments on rice germination"

处理
Treatment
发芽率
Germination rate (%)
发芽势
Germination potential (%)
常温N 93.25±1.22 a 67.36±2.12 a
常温+褪黑素N+T 92.78±1.38 a 69.24±1.85 a
常温+茉莉酸甲酯N+M 93.74±1.67 a 69.58±1.97 a
低温L 70.08±1.21 d 33.81±1.04 c
低温+褪黑素L+T 77.41±1.42 c 44.52±1.18 b
低温+茉莉酸甲酯L+M 84.23±1.24 b 43.98±1.26 b

Table 4

Growth and weight parameters of rice under different temperature treatments"

处理
Treatment
株高
Plant height
(cm)
根长
Root height
(cm)
叶龄
Leaf age
(d)
地上部干重
Shoot weigh
(g 100 plant-1)
根部干重
Root weigh
(g 100 plant-1)
茎基宽
Shoot width
(cm 5 plant-1)
根条数
Number of roots
常温N 16.02±0.67 a 5.55±0.80 c 1.90±0.02 a 2.04±0.06 a 0.50±0.01 a 0.80±0.00 a 6.80±0.79 a
常温+褪黑素N+T 15.69±0.86 a 6.10±0.77 b 1.86±0.09 a 2.06±0.09 a 0.50±0.01 a 0.80±0.00 a 7.19±0.56 a
常温+茉莉酸甲酯N+M 15.88±0.91 a 7.49±0.85 a 1.90±0.00 a 2.07±0.10 a 0.51±0.01 a 0.80±0.00 a 6.55±0.69 b
低温L 7.68±0.56 c 4.69±0.68 d 1.36±0.15 c 1.40±0.06 c 0.34±0.01 c 0.80±0.00 a 5.27±0.70 d
低温+褪黑素L+T 9.38±0.92 b 6.34±0.99 b 1.71±0.16 b 1.60±0.04 b 0.43±0.01 b 0.80±0.01 a 6.50±0.51 b
低温+茉莉酸甲酯L+M 9.19±0.71 b 7.03±0.48 a 1.71±0.18 b 1.58±0.05 b 0.43±0.01 b 0.78±0.02 a 5.67±0.72 c

Fig. 1

Rice phenotypic (A), chlorophyll a content (B), and chlorophyll b content (C) under different treatments Treatments are the same as those given in Table 1. Columns with different lowercase letters are significantly different at the 0.05 probability level."

Table 5

Nutrient contents in rice under different temperature treatments"

处理
Treatment
地上部氮含量
Shoot N content (g kg-1)
地上部磷含量
Shoot P content (g kg-1)
地上部钾含量
Shoot K content (g kg-1)
常温N 30.70±2.26 ab 7.24±0.09 a 50.82±1.25 b
常温+褪黑素N+T 30.41±1.86 ab 7.44±0.30 a 49.82±0.50 b
常温+茉莉酸甲酯N+M 32.09±1.08 a 7.34±0.28 a 55.33±1.42 a
低温L 27.35±0.28 c 5.29±0.12 d 41.91±1.22 d
低温+褪黑素L+T 28.12±0.31 c 6.25±0.21 b 45.24±1.38 c
低温+茉莉酸甲酯L+M 32.50±0.54 a 5.75±0.14 c 48.46±2.33 b

Table 6

Activity of anti-oxidase in rice under different temperature treatments"

处理
Treatment
超氧化物歧化酶
SOD
(U g-1 FW)
过氧化物酶
POD
(U g-1 FW)
过氧化氢酶
CAT
(nmol min-1 g-1 FW)
谷胱甘肽转移酶
GST
(nmol min-1 g-1 FW)
抗坏血酸过氧化物酶
APX
(μmol min-1 g-1 FW)
常温N 19.82±0.56 e 5782.16±254.16 d 66.26±2.89 d 66.26±1.29 d 0.13±0.01 d
常温+褪黑素N+T 21.40±0.33 d 6446.11±346.21 c 69.46±2.47 d 73.50±2.04 c 0.26±0.02 c
常温+茉莉酸甲酯N+M 21.37±0.49 d 6370.06±155.78 c 106.12±5.44 c 80.80±2.67 b 0.34±0.01 b
低温L 22.58±0.34 c 7122.18±264.79 b 154.32±10.10 b 79.54±5.09 b 0.23±0.02 c
低温+褪黑素L+T 23.44±0.39 b 8713.56±405.39 a 161.34±6.72 b 94.29±3.06 a 0.32±0.01 b
低温+茉莉酸甲酯L+M 24.51±0.41 a 9094.56±322.81 a 212.56±14.71 a 97.89±2.20 a 0.42±0.01 a

Table 7

Contents of MDA and H2O2 in rice under different temperature treatments"

处理
Treatment
丙二醛含量
MDA content (nmol g-1 FW)
过氧化氢含量
H2O2 content (μmol g-1 FW)
常温N 7.45±0.31 c 9.89±0.69 c
常温+褪黑素N+T 6.66±0.07 d 10.14±0.74 c
常温+茉莉酸甲酯N+M 6.25±0.31 d 9.92±0.08 c
低温L 22.85±2.72 a 15.84±0.85 a
低温+褪黑素L+T 15.19±0.50 b 12.26±0.56 b
低温+茉莉酸甲酯L+M 15.88±1.21 b 9.68±0.65 c

Fig. 2

Proline content (A), soluble protein content (B), abscisic acid content (C), and GA3 content (D) in rice under different treatments Treatments are the same as those given in Table 1. Columns with different lowercase letters are significantly different at the 0.05 probability level."

Fig. 3

Relative expression patterns of relevant genes in rice under different treatments Treatments are the same as those given in Table 1. Columns with different lowercase letters are significantly different at the 0.05 probability level."

[1] 刘勇, 张忠波, 刘雪. 低温对水稻产量的影响及防御措施. 中国新技术新产品, 2009, (12): 210.
Liu Y, Zhang Z B, Liu X. Effect of low temperature on rice yield and defense measurements. China New Tech New Prod, 2009, (12): 210. (in Chinese)
[2] 李海波, 侯守贵, 于广星, 王友芬, 陈盈, 王宁, 赵琦, 付亮, 张红艳, 邢亚南. 孕穗抽穗期低温对水稻植株、产量性状及脯氨酸含量的影响. 中国农学通报, 2011, 27(1): 63-68.
Li H B, Hou S G, Yu G X, Wang Y F, Chen Y, Wang N, Zhao Q, Fu L, Zhang H Y, Xing Y N. Effects of low temperature stresses on the characters of plant, yield and the proline contents in rice leaves at booting and heading stages. Chin Agic Sci Bull, 2011, 27(1): 63-68. (in Chinese with English abstract)
[3] 程式华. 2020年中国水稻产业发展报告. 北京: 中国农业科学技术出版社, 2020. p 173.
Cheng S H. China Rice Industry Development Report in 2020. Beijing: China Agricultural Science and Technology Press, 2020. p 173. (in Chinese)
[4] Tan D X, Hardeland R, Manchester L C. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J Exp Bot, 2012, 63: 577-597.
doi: 10.1093/jxb/err256
[5] Arnao M B, Hernández-Ruiz J. Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res, 2012, 46: 58-63.
doi: 10.1111/j.1600-079X.2008.00625.x
[6] Lobell D B, Sibley A, Ortiz-Monasterio J I. Extreme heat effects on wheat senescence in India. Nat Clim Change, 2012, 2: 186-189.
doi: 10.1038/nclimate1356
[7] Posmyk M M, Kuran H, Marciniak K, Janas K M. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res, 2008, 45: 24-31.
doi: 10.1111/j.1600-079X.2007.00552.x
[8] Schilmiller A L, Koo A J, Howe G A. Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol, 2007, 143: 812-824.
pmid: 17172287
[9] Wang Y, Xu H, Liu W, Nan W, Qu C, Jiang S, Fang H, Zhang Z, Chen X. Methyl jasmonate enhances apple' cold tolerance through the JAZ-MYC2 pathway. Plant Cell, 2018, 136: 75-84.
[10] Tian B H, Zhang Y J, Jin Z P, Liu Z Q, Pei Y X. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet. Front Biosci, 2017, 22: 530-538.
doi: 10.2741/4500
[11] 刘华招. 水稻机插中苗育秧基质的研究. 现代化农业, 2009, (3): 1-3.
Liu H Z. Study on the substrate of rice seedling in mechanical transplanting. Mod Agric, 2009, (3): 1-3. (in Chinese)
[12] 毛羽, 张无敌. 无土栽培基质的研究进展. 农业与技术, 2001, 24(3): 83-88.
Mao Y, Zhang W D. Prospects of reseachers on soilless culture substrates. Agric Tech, 2001, 24(3): 83-88. (in Chinese with English abstract)
[13] 程晓娟, 罗春华, 支庚银, 姚海华, 王艳丽. 东北寒地粳稻烨霖无土基质育秧效果试验. 中国稻米, 2015, 21(4): 147-149.
Cheng X J, Luo C H, Zhi G Y, Yao H H, Wang Y L. Effects of yelin soilless substrate on seedling raising of japonica rice variety in cold region of northeast China. China Rice, 2015, 21(4): 147-149. (in Chinese with English abstract)
[14] 朱春权, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 金千瑜, 张均华. 不同属性特征基质对早稻秧苗耐低温的影响. 中国水稻科学, 2021, 35: 503-512.
Zhu C Q, Xu Q S, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Zhang J H. Effects of substrates with different properties on chilling tolerance of early rice seedlings. Chin J Rice Sci, 2021, 35: 503-512. (in Chinese with English abstract)
[15] 毕辛华, 戴心维. 种子学. 北京: 农业出版社, 1993. pp 60-61.
Bi X H, Dai X W. Seed Science. Beijing: Agriculture Press, 1993. pp 60-61. (in Chinese)
[16] 林育炯, 张均华, 胡继杰, 朱练峰, 曹小闯, 禹盛苗, 金千瑜. 不同类型基质对机插水稻秧苗生理特征及产量的影响. 农业工程学报, 2016, 32(8): 18-26.
Lin Y J, Zhang J H, Hu J J, Zhu L F, Cao X C, Yu S M, Jin Q Y. Effects of different seedling substrates on physiological characters and grain yield of mechanized-transplanted rice. Trans CSAE, 2016, 32(8): 18-26. (in Chinese with English abstract)
[17] 鲁如坤. 土壤农业化学分析方法. 南京: 河海大学出版社, 2000. pp 308-315.
Lu R K. Methods of Soil Agricultural Chemical Analysis. Nanjing: Hehai University Press, 2000. pp 308-315. (in Chinese)
[18] 顾骏飞, 周振翔, 李志康, 戴琪星, 孔祥胜, 王志琴, 杨建昌. 水稻低叶绿素含量突变对光合作用及产量的影响. 作物学报, 2016, 42: 551-560.
doi: 10.3724/SP.J.1006.2016.00551
Gu J F, Zhou Z X, Li Z K, Dai Q X, Kong X S, Wang Z Q, Yang J C. Effects of the mutant with low chlorophyll content on photosynthesis and yield in rice. Acta Agron Sin, 2016, 42: 551-560. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00551
[19] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867-880.
[20] Wang H H, Hou J J, Li Y, Zhang Y Y, Huang J J, Liang W H. Nitric oxide-mediated cytosolic glucose-6-phosphate dehydrogenase is involved in aluminum toxicity of soybean under high aluminum concentration. Plant Soil, 2017, 416: 39-52.
doi: 10.1007/s11104-017-3197-x
[21] 周燮, 郑志富, 陈溥言, 章迪. 专一识别脱落酸甲酯的单克降抗体的制备与应用. 植物生理学报, 1969, 22(3): 284-290.
Zhou X, Zheng Z F, Chen B Y, Zhang D. Preparation and application of monoclonal antibodies specific for abscisic acid methyl ester. Physiol Mol Biol Plants, 1969, 22(3): 284-290. (in Chinese with English abstract)
[22] 郑志富, 周燮. 识别未衍生化的13-羟化Gas及其葡萄糖苷的单克隆抗体. 植物学报, 1995, 37: 761-769.
Zheng Z F, Zhou X. A monoclonal antibody recognizing nonderivative 13-hydoxy gibberellins and their glucosides. Acta Bot Sin, 1995, 37: 761-769. (in Chinese with English abstract)
[23] 余保生, 王万福, 谢保忠. 极端温度对水稻生产的影响. 现代农业科技, 2010, (24): 92.
Yu B S, Wang W F, Xie B Z. Effect of extreme temperature on rice production. Mod Agric Sci Tech, 2010, (24): 92.
[24] 段小华, 邓泽元, 宾金华. 茉莉酸甲酯对水稻幼苗抗冷性的影响. 植物生理学通讯, 2009, 45: 881-884.
Duan X H, Deng Z Y, Bin J H. Effects of methyl jasmonate on cold resistance of rice (Oryza sativa L.) seedling. Plant Physiol J, 2009, 45: 881-884. (in Chinese with English abstract)
[25] 王蕾. 茉莉酸甲酯和冠菌素对黄瓜幼苗抗冷性的影响. 中国农业大学硕士学位论文,北京, 2006.
Wang L. Effects of Methyl Jasmonate and Coronatine on Chilling Tolerance of Cucumber (Cucumis sativus L.) Seedling. MS Thesis of China Agricultural University, Beijing, China, 2006. (in Chinese with English abstract)
[26] 于奇, 曹亮, 金喜军, 邹京南, 王孟雪, 张明聪, 任春元, 张玉先. 低温胁迫下褪黑素对大豆种子萌发的影响. 大豆科学, 2019, 38: 56-62.
Yu Q, Cao L, Jin X J, Zou J N, Wang M X, Zhang M C, Ren C Y, Zhang Y X. Effects of melatonin on seed germination of soybean under low temperature stress. Soybean Sci, 2019, 38: 56-62. (in Chinese with English abstract)
[27] 董倩. N-乙酰-L-半胱氨酸、褪黑素引发对低温胁迫下杂交水稻种子萌发和幼苗生长及基因表达的影响. 浙江大学硕士学位论文,浙江杭州, 2020.
Dong Q. Effects of Seed Priming by N-acetyl-L-cysteine and Melatonin on Seed Germination, Seedling Growth and Gene Expression of Hybrid Rice under Low Temperature. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2020. (in Chinese with English abstract)
[28] 尉欣荣, 张智伟, 周雨, 刘鹏, 姚宏斌, 苗彦军, 付娟娟. 褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用. 草地学报, 2020, 28(5): 169-177.
Wei X R, Zhang Z W, Zhou Y, Liu P, Yao H B, Miao Y J, Fu J J. Effects of melatonin on growth and antioxidant system of perennial ryegrass seedlings under cold and drought stresses. Acta Agrestia Sin, 2020, 28(5): 169-177. (in Chinese with English abstract)
[29] 王国莉, 郭振飞. 低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响. 中国水稻科学, 2005, 19: 381-383.
Wang G L, Guo Z F. Effects of chilling stress on photosynthetic rate and the parameters of chlorophyll fluorescence in two rice varieties differing in sensitivity. Chin J Rice Sci, 2005, 19: 381-383. (in Chinese with English abstract)
[30] Ki-Hong J, Junghe H, Choong-Hwan R, Youngju C, Yong-Yoon C, Akio M, Hirohiko H, An G. Characterization of a rice chlorophyll-deficient mutant using the t-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463-472.
pmid: 12773632
[31] 张嘉雯, 卢绍浩, 赵喆, 赵铭钦. 外源褪黑素对低温胁迫下烟草幼苗生理指标的影响. 中国农业科技导报, 2020, 22(9): 78-86.
Zhang J W, Lu S H, Zhao Z, Zhao M Q. Influences of exogenous melatonin on physiological properties of tobacco seedlings under low temperature stress. J Agric Sci Tech, 2020, 22(9): 78-86. (in Chinese with English abstract)
[32] Salah M. 引发和冷等离子体处理通过生理、分子及代谢调控提高水稻种子的抗逆性. 浙江大学博士学位论文,浙江杭州, 2017.
Salah M. Physiological, Molecular and Metabolic Effects of Priming and Cold Plasma Treatment on Rice Seeds to Improve Resistance to Different Abiotic Stresses. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2017. (in Chinese with English abstract)
[33] 罗立津, 徐福乐, 翁华钦, 洪淑珠, 段留生, 李召虎. 脱落酸对甜椒幼苗抗寒性的诱导效应及其机理研究. 西北植物学报, 2011, 31: 94-100.
Luo L J, Xu F L, Wong H Q, Hong S Z, Duan L S, Li Z H. Inducing effects and its biological mechanisms of ABA on the chilling resistance of sweet pepper seedlings. Acta Bot Boreali-Occid Sin, 2011, 31: 94-100. (in Chinese with English abstract)
[34] 郭栋梁, 王静杰, 万小荣, 李玲. 外源脱落酸抑制花生种子发芽的生理机制. 植物生理学报, 2008, 44: 936-938.
Guo D L, Wang J J, Wan X R, Li L. Physiological mechanism of the suppression of peanut seed germination by exogenous ABA. Plant Physiol J, 2008, 44: 936-938. (in Chinese with English abstract)
[35] Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot, 2017, 138: 36-45.
doi: 10.1016/j.envexpbot.2017.02.012
[36] Zhang H J, Zhang N, Yang R C, Wang L, Sun Q Q, Li D B, Cao Y Y, Weeda S, Zhao B, Ren S. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). J Pineal Res, 2014, 57: 269-279.
doi: 10.1111/jpi.12167
[37] 庄维兵, 刘天宇, 束小春, 渠慎春, 王涛, 张凤娇, 王忠. 褪黑素在植物生长发育过程中与植物激素的关系. 安徽农业科学, 2018, 46(31): 18-22.
Zhuang W B, Liu T Y, Shu X C, Qu S C, Wang T, Zhang F J, Wang Z. Relationship between melatonin and plant hormones during plant growth and development. J Anhui Agric Sci, 2018, 46(31): 18-22. (in Chinese with English abstract)
[38] 黄涛, 陈大洲, 夏凯, 周燮. 抗冷与不抗冷水稻在低温期间叶片ABA与GA1水平变化的差异. 华北农学报, 1998, 13(4): 56-60.
Huang T, Chen D Z, Xia K, Zhou X. Differential response of ABA and GA1 levels between chilling-resistant and chilling- sensitive varieties of rice during chilling stress. Acta Agric Boreali-Sin, 1998, 13(4): 56-60. (in Chinese with English abstract)
[39] Murata N, Los D A. Membrane fluidity and temperature perception. Plant Physiol, 1997, 115: 875-879.
pmid: 12223851
[40] 祝涛, 杨美英. 低温处理对不同品种水稻苗期保护酶活性的影响. 吉林农业, 2010, (7): 95.
Zhu T, Yang M Y. Effects of low temperature treatment on activities of protective enzymes in different rice varieties at seedling stage. Agric Jilin, 2010, (7): 95. (in Chinese)
[41] You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci, 2015, 6: 1-15.
[42] Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice. Cell, 2015, 6: 1209-1221.
[43] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23: 319-327.
pmid: 10929125
[44] Tian Y, Zhang H W, Pan X W, Chen Z J, Zhang Z J, Lu X Y, Huang R F. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Trans Res, 2011, 20: 857-866.
doi: 10.1007/s11248-010-9463-9
[45] Morsy M R, Almutairi A M, Gibbons J, Yun S J, Benildo G. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene, 2005, 344: 171-180.
doi: 10.1016/j.gene.2004.09.033
[46] Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxinh of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett, 2009, 583: 2734-2738.
doi: 10.1016/j.febslet.2009.07.057
[47] Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot, 2011, 62: 4863-4874.
doi: 10.1093/jxb/err144
[1] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[2] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[3] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[4] WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324.
[5] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[6] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[7] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[8] SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: A case study of Hunan Province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420.
[9] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[10] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[11] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[12] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[13] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[14] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[15] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[10] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .