Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1601-1613.doi: 10.3724/SP.J.1006.2022.14130

• OCROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane

LI Xu-Juan1(), LI Chun-Jia1, WU Zhuan-Di1, TIAN Chun-Yan1, HU Xin1, QIU Li-Hang2, WU Jian-Ming2, LIU Xin-Long1,*()   

  1. 1Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences / Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, Yunnan, China
    2Sugarcane Research Institute of Guangxi Academy of Agricultural Sciences / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, Guangxi, China
  • Received:2021-07-20 Accepted:2021-10-19 Online:2022-07-12 Published:2021-11-02
  • Contact: LIU Xin-Long E-mail:lixujuan2011@163.com;lxlgood868@163.com
  • Supported by:
    National Natural Science Foundation of China(31760412);National Key Research and Development Program of China(2019YFD1000500)

Abstract:

Tillering is one of the most important agronomic traits for sugarcane which is a vegetatively propagated economic crop. Mining these genes related to tillering trait and utilizing them form an ideal architecture are important to effectively increase cane yield of sugarcane varieties. In this study, qRT-PCR technology was used to explore the expression characteristics of a homologue of HTD2 related to rice tillering, which was named ScHTD2 previously obtained from sugarcane. The polymorphism of ScHTD2 gene in sugarcane germplasm resource population was analyzed, and the correlation between variation sites and tillering trait were also detected. The results showed that relative expression of this gene was tissue specific and highest in leaves. During the germination and development of axillary, the relative expression was the highest in the dormant buds. With the germination of sugar buds, the relative expression level first was significantly down-regulated, and the germination and development of sugar buds were negatively regulated. Treatments of phytokinin, auxin and strigolactone can significantly induce its expression in germinating axillary buds and tiller buds of seedling. By combining with the phenotypic changes after hormone treatment, the high expression of this gene induced auxin and strigolactone could inhibit the continued development of germinating axillary buds and delay the occurrence of tillers, but this inhibitory effect did not occur in the high expression of this gene induced by phytokines. Gene polymorphism analysis on 520 cloned sequences of HTD2 genomic DNA from 26 sugarcane germplasm resources showed that the genome sequence structure of this gene contained two exons and one intron, and the variation was the most abundant in the intron region, followed by the exon 1 region. Much higher nucleotide diversity in intron region was detected in main sugarcane variety population, while the origin species parent population had the higher nucleotide diversity in exon 1 and 2 regions. In terms of haplotype diversity in the coding region, the origin species parent population possessed the most abundant haplotype diversity, followed by the main variety population. In the genetic selectivity test, the original species parent population was subjected to positive selection, with high selection pressure and rapid gene evolution, while the backbone parents population and the main variety populations are subject to negative selection toward purification. Two haplotypes of code region located at radiating center of haplotype evolution map, indicating that they belonged to primitive types. The dose effect of mutation type from 23 SNP sites and 5 InDel sites in the code region was significantly related to the tillering rate of sugarcane germplasm resources, so more attention should be paid to the dose effect of mutation types in sugarcane molecular assisted-breeding plan in future. The present study lays a foundation for further analyzing the biological meaning of tillering related to key genes and the development of functional markers in sugarcane.

Key words: sugarcane, HTD2, gene expression, gene diversity, variation site

Table 1

Name and type of sugarcane germplasm resources in this study"

编号No. 样品名称
Sample name
类型
Type
描述
Description
1 云南75-1-2 Yunnan 75-1-2 甘蔗原始种亲本
Sugarcane origin species parents
八倍体割手密 Octaploid clones of Saccharum spontaneum
2 云南6号 Yunnan 6 十倍体割手密 Decaploid clones of Saccharum spontaneum
3 黑车里本 Black cheribon 热带种 Saccharum officinarum
4 HATUNI 印度种 Saccharum barberi
5 51NG63 大茎野生种 Saccharum robustum
6 友巴 Uba 中国种 Saccharum sinense
7 F134 甘蔗骨干亲本
Sugarcane backbone parents
已育成品种数38个 38 varieties have been bred using this parent
8 CO419 已育成品种数25个 25 varieties have been bred using this parent
9 CP72-1210 已育成品种数17个 17 varieties have been bred using this parent
10 川糖57-416 Chuantang 57-416 已育成品种数15个 15 varieties have been bred using this parent
11 NCo310 已育成品种数13个 13 varieties have been bred using this parent
12 F108 已育成品种数12个 12 varieties have been bred using this parent
13 华南56-12 Huanan 56-12 已育成品种数10个 10 varieties have been bred using this parent
14 崖城71-374 Yacheng 71-374 已育成品种数9个 9 varieties have been bred using this parent
15 CP28-11 已育成品种数8个 8 varieties have been bred using this parent
16 桂糖11号 Guitang 11 已育成品种数6个 6 varieties have been bred using this parent
17 ROC10 甘蔗主栽品种
Sugarcane main varieties
主产蔗区大面积种植
Large-scale planting in the main sugarcane production areas
18 ROC16
19 ROC20
20 ROC22
21 ROC25
22 桂糖21号 Guitang 21
23 桂柳05-136 Guiliu 05-136
24 粤糖00-236 Yuetang 00-236
25 粤糖93-159 Yuetang 93-159
26 粤糖86-368 Yuetang 86-368

Fig. 1

Electrophoresis results of PCR amplification products forScHTD2 genomic sequence"

Fig. 2

Relative expression of ScHTD2 in different tissues of sugarcane variety The error bar represents the standard error of each treating group (n = 3). Different lowercase letters above the bar mean the significant difference at P < 0.05."

Fig. 3

Relative expression of ScHTD2 in different developmental stage of bud and exogenous plant hormone treatment A: the relative expression in different developmental stage of bud; B: the relative expression in stirring bud after exogenous plant hormone treatment; C: the relative expression in tillering bud of seedling after exogenous plant hormone treatment; D: the relative expression in leaf of seedling after exogenous plant hormone treatment. * and ** mean significant difference at P < 0.05 and P < 0.01, respectively."

Table 2

Sequence length of code and intron region of HTD2 in three sugarcane populations (bp)"

群体类型
Population
总序列长度
Total length of sequence
外显子1长度
Length of exon 1
内含子长度
Length of intron
外显子2长度
Length of exon 2
原始种亲本Origin species parents 1228 503 292 433
骨干亲本Backbone parents 1254 504 309 441
主栽品种Main varieties 1263 516 315 432

Fig. 4

Distributing map of nucleotide diversity (Pi) in exon and intron region nucleotide diversity of HTD2 for three sugarcane populationsHTD2 for three sugarcane populations A: origin species parents’ population; B: backbone parents’ population; C: main varieties population."

Table 3

Polymorphism of exon and intron regions of HTD2 for three sugarcane populations"

序列区域
Sequence region
群体名称
Population
克隆序列数
Number of
sequenced clones
序列长度
Length of
sequence (bp)
SNP位点数
Number of SNP
InDel位点数
Number of InDel
核苷酸多样性
Nucleotide diversity (Pi)
外显子1
Exon 1
原始种亲本Origin species parents 120 503 29 8 0.0065
骨干亲本Backbone parents 200 504 46 5 0.0043
主栽品种Main varieties 200 516 43 7 0.0046
内含子
Intron
原始种亲本Origin species parents 120 292 32 39 0.0121
骨干亲本Backbone parents 200 309 42 51 0.0142
主栽品种Main varieties 200 315 39 55 0.0171
外显子2
Exon 2
原始种亲本Origin species parents 120 433 14 3 0.0033
骨干亲本Backbone parents 200 441 20 13 0.0012
主栽品种Main varieties 200 432 24 1 0.0016

Fig. 5

Main types of InDel loci in exon and intron regions of HTD2 gene for three sugarcane populations"

Table 4

Ka/Ks and number of synonymous and nonsynonymous in code region of HTD2 for three sugarcane populations"

群体类型
Population
编码区长度
Length of code region (bp)
同义突变位点数
Number of synonymous mutation sites
非同义突变位点数
Number of non-synonymous mutation sites
Ka/Ks
原始种亲本Origin species parents 936 7 34 1.7473
骨干亲本Backbone parents 945 25 38 0.2258
主栽品种Main varieties 945 27 41 0.2141

Table 5

Haplotype diversity of code region of HTD2 for three sugarcane populations"

群体类型
Population
克隆序列数
Number of
sequenced clones
单倍型数量
Number of haplotypes
单倍型多样性
Haplotype diversity (Hd)
核苷酸多样性
Nucleotide diversity (Pi)
平均核苷酸差异数Average number of
nucleotide difference (k)
原始种亲本Origin species parents 120 32 0.8394 0.0050 4.3510
骨干亲本Backbone parents 200 34 0.6610 0.0028 2.4970
主栽品种Main varieties 200 43 0.7981 0.0032 2.9640

Fig. 6

Haplotype network of code region of HTD2 in three sugarcane populations"

Table 6

Distribution of main haplotypes of code region of HTD2 in three sugarcane populations"

主要单倍型
Main haplotypes
原始亲本种
Origin species parents
骨干亲本
Backbone parents
主栽品种
Main varieties
Hap3 51NG63, 黑车里本,
HATUNI, 友巴
51NG63, Black cheribon, HATUNI, Uba
川糖57-416, Co419, CP28-11,
C72-1210, F108, 桂糖11号, 华南56-12, NCo310, 崖城71-374
Chuantang 57-416, Co419, CP28-11, CP72-1210, F108, F134, Guitang 11,
Huanan 56-12, Yacheng 71-374
ROC25, 桂柳05-136, ROC10, ROC16, ROC20, ROC22, 粤糖00-236, 粤糖93-159, 桂糖21号, 粤糖86-368
ROC25, Guiliu 05-136, ROC10, ROC16, ROC20, ROC22, Yuetang 00-236, Yuetang 93-159, Guitang 21, Yuetang 86-368
Hap4 51NG63, 黑车里本, HATUNI, 友巴, 云南6号
51NG63, Black cheribon, HATUNI, Uba, Yunnan 6
Co419, CP28-11, F108, 桂糖11号,
华南56-12, NCo310, 崖城71-374
Co419, CP28-11, F108, Huanan 56-12, NCo310, Yacheng 71-374
ROC25, 桂柳05-136, ROC10, ROC16, ROC20, ROC22, 桂糖21号, 粤糖00-236, 粤糖93-159, 粤糖86-368
ROC25, Guiliu 05-136, ROC10, ROC16, ROC20, ROC22, Guitang 21, Yuetang 00-236, Yuetang 93-159, Yuetang 86-368
Hap18 友巴, 云南6号
Uba, Yunnan 6
F108 桂糖21号 Guitang 21
Hap37 HATUNI, 友巴
HATUNI, Uba
桂柳05-136 Guiliu 05-136
Hap39 HATUNI 桂柳05-136 Guiliu 05-136
Hap27 云南6号 Yunnan 6 桂糖11号 Guitang 11
Hap36 HATUNI, 云南75-1-2 HATUNI, Yunnan 75-1-2 桂柳05-136 Guiliu 05-136
Hap30 云南6号 Yunnan 6 桂糖21号 Guitang 21

Table 7

Pearson correlation analysis between variation base type of SNPs of code region of HTD2 and tillering rate for sugarcane germplams resources"

序号
No.
SNP名称
SNP name
碱基类型
Base type
相关系数
Correlation coefficient
序号
No.
SNP名称
SNP name
碱基类型
Base type
相关系数
Correlation coefficient
1 SNP19 C 0.429* 14 SNP356 C -0.405*
T -0.429* A 0.405*
2 SNP21 A -0.442* 15 SNP392 C -0.429*
3 SNP39 G -0.444* A 0.429*
A 0.444* 16 SNP422 C 0.423*
4 SNP66 C -0.402* A -0.423*
5 SNP67 G -0.432* 17 SNP449 C 0.497**
6 SNP77 G -0.395* A -0.497**
7 SNP110 C 0.429* 18 SNP582 C -0.455*
G -0.429* A 0.455*
8 SNP111 C -0.429* 19 SNP606 G 0.429*
T 0.429* 20 SNP662 C -0.429*
9 SNP130 G 0.429* T 0.429*
10 SNP154 G -0.432* 21 SNP700 C -0.429*
11 SNP156 G -0.432* G 0.429*
12 SNP182 C -0.404* 22 SNP785 C -0.444*
T 0.429* T 0.444*
13 SNP213 T 0.484* 23 SNP843 C 0.536**
G -0.475* T -0.536**

Table 8

Pearson correlation analysis between InDels of code region of HTD2 and tillering rate for sugarcane germplasm resources"

InDel名称
InDel name
相关系数
Correlation coefficient
特征描述
Characteristic description
InDel名称
InDel name
相关系数
Correlation coefficient
特征描述
Characteristic description
InDel 19 0.429* 4碱基插入
4 bases insert
InDel 150 0.429* 12碱基插入
12 bases insert
InDel 23 -0.429* 13碱基缺失
13 bases deletion
InDel 647 -0.429* 单碱基缺失
Single base deletion
InDel 54 0.429* 24碱基插入
24 bases insert
[1] Pribil M, Hermann S R, Dun G D, Karno Ngo C, O’Neill S, Wang L, Bonnett G D, Chandler P M, Beveridge C A, Lakshmanan P. Altering sugarcane shoot architecture through genetic engineering:prospects for increasing cane and sugar yield. In: Proceedings of the 2007 Conference of the Australian Society of Sugar Cane Technologists. Cairns, Queensland, Australia: Australian Society of Sugar Cane Technologists, 2007. pp 251-257.
[2] Vasantha S, Shekinah D E, Gupta C, Rakkiyappan P. Tiller production, regulation and senescence in sugarcane (Saccharum species hybrid) genotypes. Sugar Technol, 2012, 14: 156-160.
doi: 10.1007/s12355-011-0129-6
[3] Liu W Z, Chao W, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009, 230: 649-658.
doi: 10.1007/s00425-009-0975-6
[4] Gao Z Y, Qian Q, Liu X H, Yan M X, Feng Q, Dong G J, Liu J, Han B. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol, 2009, 71: 265-276.
doi: 10.1007/s11103-009-9522-x
[5] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406-410.
doi: 10.1038/nature12878
[6] 吕爱丽, 李旭娟, 刘洪博, 吴才文, 曾千春, 刘新龙. 甘蔗ScHTD2基因的克隆及生物信息学分析. 热带作物学报, 2016, 37: 1133-1140.
Lyu A L, Li X J, Liu H B, Wu C W, Zeng Q C, Liu X L. Cloning and bioinformatics analysis of full-Length cDNA sequence of ScHTD2 gene from sugarcane. Chin J Trop Crops, 2016, 37: 1133-1140. (in Chinese with English abstract)
[7] 陈迪文, 黄莹, 卢颖林, 江永, 李奇伟. 不同营养液配方对甘蔗组培幼苗生长的影响. 广东农业科学, 2013, 40(21): 28-31.
Chen D W, Huang Y, Lu Y L, Jiang Y, Li Q W. Effect of different nutrient solutions on the growth of sugarcane tissue culture seedlings. Guangdong Agric Sci, 2013, 40(21): 28-31. (in Chinese with English abstract)
[8] Ling H, Wu Q B, Guo J L, Xu L P, Que Y X. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469
[9] McIntyre C L, Jackson M, Cordeiro G M, Amouyal O, Hermann S, Aitken K S, Eliott F, Henry R J, Casu R E, Bonnett G D. The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed, 2006, 18: 39-50.
doi: 10.1007/s11032-006-9012-7
[10] Zhang J, Arro J, Chen Y Q, Ming R. Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC Genomics, 2013, 14: 314.
doi: 10.1186/1471-2164-14-314
[11] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054
[12] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25: 1451-1452.
doi: 10.1093/bioinformatics/btp187 pmid: 19346325
[13] Leigh J W, Bryant D. PopART: full-feature software for haplotype network construction. Methods Ecol Evol, 2015, 6: 1110-1116.
doi: 10.1111/2041-210X.12410
[14] 张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦TaPK7基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537-1543.
doi: 10.3724/SP.J.1006.2008.01537
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between single nucleotide polymorphism of TaPK7 gene and drought tolerance in wheat. Acta Agron Sin, 2008, 34: 1537-1543. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01537
[15] 俎鲁霞, 徐国恒. tRNA的结构、功能及合成简介. 生物学通报, 2008, 43(1): 19-20.
Zu L X, Xu G H. Introduction to the structure, function and synthesis of tRNA. Bull Biol, 2008, 43(1): 19-20.
[16] Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416-1424.
doi: 10.1093/pcp/pcp091
[17] Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim H I, Yoneyama K, Xie X N, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA, 2014, 111: 18084-18089.
doi: 10.1073/pnas.1410801111
[18] Hamiaux C, Drummond R S M, Janssen B J, Ledger S E, Cooney J M, Newcomb R D, Snowden K C. DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol, 2012, 22: 2032-2036.
doi: 10.1016/j.cub.2012.08.007 pmid: 22959345
[19] Germain A, Clavé G, Badet-Denisot M A, Pillot J P, Cornu D, Le Caer J P, Burger M, Pelissier Frank, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer F D. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nat Chem Biol, 2016, 12: 787-794.
doi: 10.1038/nchembio.2147
[20] 田彦挺. 杨树独脚金内酯信号转导关键基因D14的克隆及功能研究. 山东农业大学硕士学位论文, 山东泰安, 2018.
Tian Y T. Cloning and Functional Study of D14, a Key Gene for Signal Transduction of Poplar Strigolactone. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018. (in Chinese with English abstract)
[21] 李炎坤, 卓一南, 曾湘达, 何瑞. 青天葵独脚金内酯信号转导关键基因D14的克隆与亚细胞定位分析. 热带作物学报, 2019, 40: 504-513.
Li Y K, Zhuo Y N, Zeng X D, He R.Cloning and expression analysis of D14, the key gene in the signal transduction of strigolactones from Nervilia fordii. Chin J Trop Crops, 2019, 40: 504-513. (in Chinese with English abstract)
[22] 谢兆辉. 基因概念的演绎. 遗传, 2010, 32: 448-454.
Xie Z H. The development of gene concepts. Hereditas, 2010, 32: 448-454.
[23] 张志鹏, 王晓玥, 黄少雄, 张昭. 植物功能基因单核苷酸多态性的研究进展. 中国农学通报, 2016, 32(20): 25-29.
Zhang Z P, Wang X Y, Huang S X, Zhang Z. Research progress of single nucleotide polymorphism in plant functional genes. Chin Agric Sci Bull, 2016, 32(20): 25-29. (in Chinese with English abstract)
[24] Zhang J S, Nagai C, Yu Q Y, Pan Y B, Ayala-Silva T, Schnell R J, ComstocK J C, Arumuganathan A K, Ming R. Genome size variation in three Saccharum species. Euphytica, 2012, 185: 511-519.
doi: 10.1007/s10681-012-0664-6
[25] Bundock P C, Eliott F G, Ablett G, Benson A D, Casu R E, Aitken K S, Henry R J. Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J, 2009, 7: 347-354.
doi: 10.1111/j.1467-7652.2009.00401.x pmid: 19386042
[26] McIntyre C L, Jackson M, Cordeiro G M, Amouyal O, Hermann S, Aitken K S, Eliott F, Henry R J, Casu R E, Bonnett G D. The identification and characterisation of alleles of sucrose phosphate synthase gene family III in sugarcane. Mol Breed, 2006, 18: 39-50.
doi: 10.1007/s11032-006-9012-7
[27] 龚莺, 陈虹君, 许在恩, 郭小勤. 竹类植物Dwarf14 (D14)基因的多态性分析. 核农学报, 2018, 32: 48-57.
Gong Y, Chen H J, Xu Z E, Guo X Q.Polymorphisms of Dwarf14 (D14) gene in Bambusoideae. J Nuclear Agric Sci, 2018, 32: 48-57. (in Chinese with English abstract)
[1] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice  [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[2] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[3] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[4] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[5] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[6] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[7] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[8] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[9] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[10] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[11] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[12] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[13] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[14] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[15] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .