Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2028-2040.doi: 10.3724/SP.J.1006.2022.12068

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism

LIU Kun(), HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun*(), YANG Jian-Chang   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Co-innovation Centre for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-09-20 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-16
  • Contact: LIU Li-Jun E-mail:940057576@qq.com;ljliu@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071947);National Natural Science Foundation of China(31871557);Jiangsu Agriculture Science and Technology Innovation Fund(cx(18)3007);Open Project of Jiangsu Key Laboratory of Crop Genetics and Physiology(YSCL201807);National Key Research and Development Program of China(2016YFD0300502);National Key Research and Development Program of China(2017YFD0301206);Priority Academic Program Deve¬lopment of Jiangsu Higher Education Institutions(PAPD);Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX21_3235)

Abstract:

The application of panicle nitrogen fertilizer is an important management measure to increase rice yield, but its effect and mechanism of application rates on the yield increase of super rice varieties with different panicle sizes are still unclear. In this study, three super rice varieties with large differences in panicle sizes (indicated by the spikelet number per panicle) of Nanjing 9108 (small panicle size), Yangliangyou 6 (medium panicle size), and Yongyou 1540 (large panicle size) were selected as materials. Under the condition of the same amount of base-tiller fertilizer (162 kg N hm-2), the effects of five panicle nitrogen fertilizer rates (PNR) of 0, 54, 108, 162, and 216 kg hm-2 on the yield of the above rice varieties were studied. And its regulatory effects on the differentiation and degeneration of spikelets and related morphophysiological indices after heading were observed. The results were as follows: (1) In the PNR range of 0-216 kg hm-2, the spikelet number per panicle gradually increased but the seed-setting rate and 1000-grain weight gradually decreased with the increase of PNR. And the higher the PNR, the more obvious the decrease of seed-setting rate and 1000-grain weight. Three rice varieties, Nanjing 9108, Yangliangyou 6, and Yongyou 1540, had the highest yields in the PNR of 162-216, 108-162, and 54-108 kg hm-2, respectively. According to the curve equation of grain yield and PNR, the optimal PNR for high yields of the above three varieties were calculated to be 177.6-182.0, 134.3-136.3, and 109.9-125.7 kg hm-2, respectively. (2) In general, rice varieties with large panicle sizes had higher yields, while rice varieties with small panicle sizes had greater yield-increasing effects of PNR. The number of differentiated and surviving secondary spikelets in rice varieties with small panicle size increased greatly after application of panicle nitrogen fertilizer, which was the main reason that the yield-increasing effect was higher than that of rice varieties with medium and large panicle size. (3) Under the condition of high-yield PNR, high effective leaf area ratio, grain-leaf ratio (spikelet/leaf area, filled grain/leaf area, and grain weight/leaf area), non-structural carbohydrate (NSC) translocation amount, sugar-spikelet ratio, root oxidation activity, activity root of spikelet and zeatin (Z) + zeatin riboside (ZR) content in grains and roots from 0-40 day(s) after heading of three rice varieties were high. Correlation analysis showed that the yields of super rice varieties with different panicle sizes and the above indicators basically had a significant or extremely significant positive correlation. These results indicated that the PNR should be adjusted according to the panicle size. The appropriate PNR was beneficial to maintain a high effective leaf area ratio, grain-leaf ratio, NSC translocation amount, sugar-spikelet ratio, root oxidation activity, activity root of spikelet, and Z + ZR content in grains and roots after heading under the premise of higher total spikelets. This helped to maintain a high seed-setting rate and grain weight, thereby ultimately increasing the grain yield.

Key words: rice, panicle nitrogen fertilizer rate, panicle size, high yields, morphology and physiology

Table 1

Analysis of variance of panicle nitrogen fertilizer rate on grain yield and main morphophysiological indices of super rice varieties with different panicle sizes"

变异来源
Source of variation
自由度
Degree of freedom
产量
Grain yield
每穗粒数
Spikelets
per panicle
糖花比
Sugar-spikelet
ratio
颖花根活量
Activity root of spikelet
年份 Year (Y) 1 ns ns ns ns
穗肥施氮量 Panicle nitrogen fertilizer rate (P) 4 66.8** 12.3** 10.9** 260.5**
品种 Variety (V) 2 405.9** 233.2** 16.6** 18.4**
年份×穗肥施氮量 Y × P 4 ns ns ns ns
年份×品种 Y × V 2 ns ns ns ns
穗肥施氮量×品种 P × V 8 4.3** ns ns ns
年份×穗肥施氮量×品种 Y × P × V 8 ns ns ns ns

Table 2

Effects of panicle nitrogen fertilizer rate on grain yield and its components of super rice varieties with different panicle sizes"

年份
Year
品种
Variety
穗肥施氮量
Panicle nitrogen fertilizer rate
(kg hm-2)
单位面积穗数
Panicle number
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets (×106 hm-2)
结实率
Seed-setting
rate (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(t hm-2)
2018 南粳9108 0 268.8 a 116.5 d 313.2 d 91.5 a 25.9 a 7.42 d
Nanjing 9108 54 271.4 a 132.7 c 360.1 c 90.2 ab 25.6 a 8.32 c
108 273.3 a 144.8 b 395.7 b 88.8 ab 25.3 ab 8.89 b
162 274.7 a 155.5 a 427.2 a 86.4 b 25.2 ab 9.30 a
216 276.2 a 162.1 a 447.7 a 82.7 c 24.7 b 9.15 ab
平均Mean 272.9 142.3 388.8 87.9 25.3 8.61
扬两优6号 0 205.5 a 184.6 d 379.4 d 84.8 a 29.1 a 9.36 c
Yangliangyou 6 54 206.7 a 205.5 c 424.8 c 82.9 ab 28.8 a 10.14 b
108 207.8 a 223.4 b 464.2 b 81.2 ab 28.5 ab 10.74 a
162 208.7 a 234.7 ab 489.8 a 78.1 b 28.3 ab 10.83 a
216 208.9 a 244.1 a 509.9 a 71.6 c 27.9 b 10.19 b
平均Mean 207.5 218.5 453.6 79.7 28.5 10.25
甬优1540 0 192.3 a 261.3 d 502.5 d 83.2 a 24.1 a 10.08 c
Yongyou 1540 54 193.6 a 279.8 c 541.7 c 82.5 a 24.0 a 10.73 ab
108 194.2 a 303.9 b 590.2 b 80.3 ab 23.8 ab 11.28 a
162 195.5 a 314.3 ab 614.5 ab 76.9 b 23.6 ab 11.15 a
216 196.8 a 321.9 a 633.5 a 71.7 c 23.3 b 10.58 bc
平均Mean 194.5 296.2 576.5 78.9 23.8 10.76
2019 南粳9108 0 265.9 a 117.4 d 312.2 d 92.3 a 26.0 a 7.49 d
Nanjing 9108 54 270.7 a 132.9 c 359.8 c 90.6 ab 25.7 a 8.38 c
108 272.1 a 144.6 b 393.5 b 89.1 ab 25.4 ab 8.90 b
162 273.6 a 156.8 a 429.0 a 86.7 b 25.2 ab 9.37 a
216 274.2 a 163.4 a 448.0 a 82.2 c 24.8 b 9.13 ab
平均Mean 271.3 143.0 388.5 88.2 25.4 8.66
扬两优6号 0 204.2 a 183.2 d 374.1 d 85.4 a 29.2 a 9.33 c
Yangliangyou 6 54 207.8 a 203.8 c 423.5 c 83.2 ab 28.9 a 10.18 b
108 208.4 a 219.4 b 457.2 b 81.4 ab 28.6 ab 10.64 a
162 210.5 a 231.9 ab 488.1 a 78.7 b 28.3 ab 10.87 a
216 212.7 a 240.5 a 511.5 a 71.8 c 27.8 b 10.21 b
平均Mean 208.7 215.8 450.9 80.1 28.6 10.25
甬优1540 0 191.5 a 263.6 d 504.8 d 83.8 a 24.2 a 10.24 c
Yongyou 1540 54 193.1 a 287.4 c 555.0 c 82.6 a 24.1 a 11.05 ab
108 193.7 a 305.7 b 592.1 b 80.6 b 23.7 ab 11.31 a
162 194.1 a 312.5 ab 606.6 ab 75.1 b 23.6 ab 10.75 b
216 196.3 a 319.1 a 626.4 a 71.3 c 23.4 b 10.45 bc
平均Mean 193.7 297.7 577.0 78.7 23.8 10.76

Table 3

Panicle nitrogen fertilizer rate of super rice varieties with different panicle sizes with maximum grain yield"

年份
Year
品种
Variety
穗肥施氮量(x, kg N hm-2)与产量(y, kg hm-2)关系方程
Equation between panicle nitrogen fertilizer rate
(x, kg N hm-2) and grain yield (y, kg hm-2)
R2 xopt
(x, kg N hm-2)
ymax
(kg hm-2)
2018 南粳9108 Nanjing 9108 y = -0.0555x2+20.2x+7404.7 0.996 182.0 9242.7
扬两优6号 Yangliangyou 6 y = -0.0823x2+22.1x+9304.8 0.978 134.3 10788.4
甬优1540 Yongyou 1540 y = -0.0764x2+19.2x+10029.0 0.977 125.7 11235.3
2019 南粳9108 Nanjing 9108 y = -0.0566x2+20.1x+7469.9 0.989 177.6 9254.4
扬两优6号 Yangliangyou 6 y = -0.0800x2+21.8x+9290.7 0.976 136.3 10775.8
甬优1540 Yongyou 1540 y = -0.0746x2+16.4x+10298.0 0.879 109.9 11199.3

Table 4

Effects of panicle nitrogen fertilizer rate on primary and secondary spikelet differentiation and degeneration of super rice varieties with different panicle sizes"

品种
Variety
穗肥施氮量
Panicle nitrogen
fertilizer rate
(kg hm-2)
每穗一次颖花 Primary spikelets per panicle 每穗二次颖花Secondary spikelets per panicle
分化数
Differentiated
number
退化数
Degenerated
number
现存数
Surviving
number
退化率
Degeneration
rate (%)
分化数
Differentiated
number
退化数
Degenerated
number
现存数
Surviving
number
退化率
Degeneration
rate (%)
南粳9108 0 68.9 c 0.76 d 68.1 c 1.10 c 74.6 e 14.3 e 60.4 d 19.2 b
Nanjing 9108 54 71.4 bc 0.88 c 70.5 bc 1.23 b 91.3 d 15.8 d 75.5 c 17.3 c
108 74.9 b 0.98 b 73.9 b 1.31 a 105.4 c 19.3 c 86.1 b 18.3 bc
162 76.7 ab 1.04 a 75.7 ab 1.36 a 116.1 b 22.7 b 93.4 a 19.6 b
216 79.4 a 1.09 a 78.3 a 1.37 a 122.6 a 27.4 a 95.2 a 22.3 a
扬两优6号 0 68.6 c 0.98 e 67.6 c 1.43 e 168.5 d 34.8 d 133.7 c 20.7 d
Yangliangyou 6 54 72.8 b 1.34 d 71.5 b 1.84 d 184.3 c 36.6 d 147.7 b 19.9 d
108 75.3 b 1.58 c 73.7 ab 2.10 c 231.6 b 54.7 c 176.9 a 23.6 c
162 77.6 ab 1.83 b 75.8 a 2.36 b 250.8 a 64.2 b 186.6 a 25.6 b
216 79.5 a 2.13 a 77.4 a 2.68 a 259.5 a 71.2 a 188.3 a 27.4 a
甬优1540 0 87.8 d 0.40 e 87.4 c 0.46 e 239.5 d 52.8 d 186.6 d 22.0 c
Yongyou 1540 54 93.3 c 0.95 d 92.4 b 1.02 d 254.3 c 54.4 d 199.8 c 21.4 c
108 99.6 b 1.85 c 97.8 a 1.86 c 282.7 b 62.2 c 220.5 b 22.0 c
162 103.8 ab 3.25 b 100.6 a 3.13 b 307.8 a 77.7 b 230.1 ab 25.2 b
216 106.2 a 3.82 a 102.4 a 3.60 a 322.0 a 88.1 a 233.9 a 27.4 a

Table 5

Effects of panicle nitrogen fertilizer rate on leaf area index (LAI) and grain-leaf ratio at heading stage of super rice varieties with different panicle sizes"

品种
Variety
穗肥施氮量
Panicle nitrogen
fertilizer rate
(kg hm-2)
叶面积指数 LAI 粒叶比 Grain-leaf ratio
总LAI
Total LAI
高效LAI
Effective LAI
高效叶面积率
High effective
leaf area rate (%)
颖花/叶
Spikelet/leaf area (cm-2)
实粒/叶
Filled grain/leaf area (cm-2)
粒重/叶
Grain weight/leaf area (mg cm-2)
南粳9108 0 6.33 d 3.83 d 60.5 c 0.49 d 0.45 c 12.8 c
Nanjing 9108 54 6.62 c 4.24 c 63.9 b 0.54 c 0.49 b 13.9 b
108 6.87 bc 4.56 b 66.3 ab 0.58 b 0.51 ab 14.6 a
162 7.02 b 4.84 a 68.9 a 0.61 a 0.53 a 15.3 a
216 7.53 a 5.02 a 66.7 ab 0.59 ab 0.49 b 14.7 a
扬两优6号 0 6.64 d 4.15 d 62.5 b 0.57 c 0.48 b 16.6 c
Yangliangyou 6 54 6.87 cd 4.45 c 64.7 ab 0.62 b 0.51 a 17.8 b
108 7.14 bc 4.77 b 66.8 a 0.65 ab 0.53 a 18.5 ab
162 7.43 b 4.97 ab 66.9 a 0.66 a 0.51 a 18.7 a
216 7.87 a 5.08 a 64.5 ab 0.65 ab 0.46 b 18.1 ab
甬优1540 0 6.98 c 4.45 c 63.8 c 0.72 c 0.60 b 17.3 c
Yongyou 1540 54 7.16 bc 4.77 b 66.5 bc 0.76 b 0.62 ab 18.1 bc
108 7.32 b 5.15 a 70.4 a 0.81 a 0.65 a 19.2 a
162 7.78 a 5.29 a 68.0 ab 0.79 ab 0.61 b 18.6 ab
216 8.12 a 5.33 a 65.7 bc 0.78 ab 0.56 c 18.2 b

Fig. 1

Effects of panicle nitrogen fertilizer rate on NSC translocation amount, NSC remobilization, and sugar-spikelet ratio of super rice varieties with different panicle sizes 0N, 54N, 108N, 162N, and 216N represent the panicle nitrogen fertilizer rate of 0, 54, 108, 162, and 216 kg hm-2, respectively. Different lowercase letters indicate significant differences at the P = 0.05 within the same variety. NSC: non-structural carbohydrate."

Fig. 2

Effects of panicle nitrogen fertilizer rate on root oxidation activity of super rice varieties with different panicle sizes 0N, 54N, 108N, 162N, and 216N represent the panicle nitrogen fertilizer rate of 0, 54, 108, 162, and 216 kg hm-2, respectively. Different lowercase letters indicate significant differences at the P = 0.05 within the same growth stage."

Fig. 3

Effects of panicle nitrogen fertilizer rate on root dry weight and activity root of spikelet of super rice varieties with different panicle sizes 0N, 54N, 108N, 162N, and 216N represent the panicle nitrogen fertilizer rate of 0, 54, 108, 162, and 216 kg hm-2, respectively. Different lowercase letters indicate significant differences at the P = 0.05 within the same growth stage."

Fig. 4

Effects of panicle nitrogen fertilizer rate on Z + ZR content in grains and roots of super rice varieties with different panicle sizes 0N, 54N, 108N, 162N, and 216N represent the panicle nitrogen fertilizer rate of 0, 54, 108, 162, and 216 kg hm-2, respectively. Different lowercase letters indicate statistical significance at the P = 0.05 within the same growth stage."

Fig. 5

Correlation between the main morphophysiological indices and grain yield of super rice varieties with different panicle sizes TLAI, ELAI, ELAR, SLA, FLA, GLA, NSCT, NSCR, and SSR represent total LAI, effective LAI, high effective leaf area rate, spikelet/leaf area, filled grain/leaf area, grain weight/leaf area, NSC translocation amount, NSC remobilization, and sugar-spikelet ratio at heading stage, respectively. PZ.ZR0, PZ.ZR10, PZ.ZR20, PZ.ZR30, and PZ.ZR40 represent Z + ZR content in grains at 0, 10, 20, 30, and 40 days after heading, respectively. ROA0, ROA10, ROA20, ROA30, and ROA40 represent root oxidation activity at 0, 10, 20, 30, and 40 days after heading, respectively. RDW0, RDW10, RDW20, RDW30, and RDW40 represent root dry weight at 0, 10, 20, 30, and 40 days after heading, respectively. AROS0, AROS10, AROS 20, AROS 30, and AROS 40 represent activity root of spikelet at 0, 10, 20, 30, and 40 days after heading, respectively. RZ.ZR0, RZ.ZR10, RZ.ZR20, RZ.ZR30, and RZ.ZR40 represent Z + ZR content in roots at 0, 10, 20, 30, and 40 days after heading, respectively. NSC: non-structural carbohydrate."

[1] Huang M, Tang Q, Ao H, Zou Y. Yield potential and stability in super hybrid rice and its production strategies. J Integr Agric, 2017, 16: 1009-1017.
doi: 10.1016/S2095-3119(16)61535-6
[2] Long J R, Ma G H, Wan Y Z, Song C F, Sun J, Qin R J. Effects of nitrogen fertilizer level on chlorophyll fluorescence characteristics in flag leaf of super hybrid rice at late growth stage. Rice Sci, 2013, 20: 220-228
doi: 10.1016/S1672-6308(13)60138-9
[3] 吴俊, 邓启云, 袁定阳, 齐绍武. 超级杂交稻研究进展. 科学通报, 2016, 61: 3787-3796.
Wu j, Deng Q Y, Yuan D Y, Qi S W. Progress of super hybrid rice research in China. Chin Sci Bull, 2016, 61: 3787-3796. (in Chinese with English abstract)
doi: 10.1360/N972016-01013
[4] Ke S, Liu X J, Luan X, Yang W, Zhu H, Liu G, Zhang G, Wang S. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.). Gene, 2018, 675: 285-300.
doi: 10.1016/j.gene.2018.06.105
[5] Jang S, Lee Y, Lee G, Seo J, Lee D, Yu Y, Chin J H, Koh H J. Association between sequence variants in panicle development genes and the number of spikelets per panicle in rice. BMC Genet, 2018, 19: 5.
doi: 10.1186/s12863-017-0591-6 pmid: 29334899
[6] Liu K, Chen Y, Huang J, Qiu Y, Li S, Zhuo X, Yu F, Gao J, Li G, Zhang W, Zhang H, Gu J, Liu L, Yang J. Spikelet differentiation and degeneration in rice varieties with different panicle sizes. Food Energy Secur, 2021, 11: e320.
[7] 顾俊荣, 韩立宇, 董明辉, 陈培峰, 乔中英. 不同穗型粳稻干物质运转与颖花形成及籽粒灌浆结实的差异研究. 扬州大学学报(农业与生命科学版), 2017, 38(4): 68-73.
Gu J R, Han L Y, Dong M H, Chen P F, Qiao Z Y. Studies on the difference of dry matter accumulation and transportation, spikelets formation and the grain filling of japonica rice varieties with different panicle types. J Yangzhou Univ (Agric Life Sci Edn), 2017, 38(4): 68-73 (in Chinese with English abstract).
[8] Han Y, Yang H, Jiao Y. Regulation of inflorescence architecture by cytokinins. Front Plant Sci, 2014, 5: 669.
[9] Xue Y, Duan H, Liu L, Wang Z, Yang J, Zhang J. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Sci, 2013, 53: 271-284.
doi: 10.2135/cropsci2012.06.0360
[10] Zhou W, Lyu T, Chen Y, Hu J, Zhang Q, Ren W. Late nitrogen application enhances spikelet number in indica hybrid rice (Oryza sativa L.). Sci Agric, 2017, 74: 127-133.
doi: 10.1590/1678-992x-2016-0094
[11] Gu J, Li Z, Mao Y, Struik P C, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331
doi: 10.1016/j.plantsci.2018.06.010
[12] Wang Z, Zhang W, Beebout S S, Zhang H, Liu L, Yang J, Zhang J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res, 2016, 193: 54-69.
doi: 10.1016/j.fcr.2016.03.006
[13] Ju C, Zhu Y, Liu T, Sun C. The effect of nitrogen reduction at different stages on grain yield and nitrogen use efficiency for nitrogen efficient rice varieties. Agronomy, 2021, 11: 462.
doi: 10.3390/agronomy11030462
[14] 白志刚, 张均华, 黄洁, 朱练峰, 曹小闯, 朱春权, 钟楚, 金千瑜. 氮肥运筹对水稻氮代谢及稻田土壤氮素迁移转化的影响. 生态学杂志, 2018, 37: 3440-3448.
Bai Z G, Zhang J H, Huang J, Zhu L F, Cao X C, Zhu C Q, Zhong C, Jin Q Y. Effects of nitrogen regime on nitrogen metabolism of rice and nitrogen transformation and translocation in paddy soils. Chin J Ecol, 2018, 37: 3440-3448. (in Chinese with English abstract)
[15] Peng S, Buresh R J, Huang J, Zhong X, Zou Y, Yang J, Wang G, Liu Y, Hu R, Tang Q, Cui K, Zhang F, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management: a review. Agron Sustain Dev, 2010, 30: 649-656.
doi: 10.1051/agro/2010002
[16] Zhou C, Huang Y, Jia B, Wang S, Dou F, Samonte S O P, Chen K, Wang Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy, 2019, 9: 555.
doi: 10.3390/agronomy9090555
[17] Zhang W J, Li G H, Yang Y M, Li Q, Zhang J, Liu J Y, Wang S H, Tang S, Ding Y F. Effect of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes. J Integr Agric, 2013, 13: 63-72.
doi: 10.1016/S2095-3119(13)60388-3
[18] Xu L, Yuan S, Wang X, Yu X, Peng S. High yields of hybrid rice do not require more nitrogen fertilizer than inbred rice: a meta-analysis. Food Energy Secur, 2021, 10: e276.
[19] Wang Z, Gu D, Beebout S S, Zhang H, Liu L, Yang J, Zhang J. Effect of irrigation regime on grain yield, water productivity, and methane emissions in dry direct-seeded rice grown in raised beds with wheat straw incorporation. Crop J, 2018, 6: 495-508.
doi: 10.1016/j.cj.2018.05.004
[20] Wei H, Zhang H, Blumwald E, Li H, Cheng J, Dai Q, Huo Z, Xu K, Guo B. Different characteristics of high yield formation between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2016, 198: 179-187.
doi: 10.1016/j.fcr.2016.09.009
[21] Chen Y, Li S, Zhang Y, Li T, Ge H, Xia S, Gu J, Zhang H, Lü B, Wu X, Wang Z, Yang J, Zhang J, Liu L. Rice root morphological and physiological traits interaction with rhizosphere soil and its effect on methane emissions in paddy fields. Soil Biol Biochem, 2019, 129: 191-200.
doi: 10.1016/j.soilbio.2018.11.015
[22] Zhang W, Zhu K, Wang Z, Zhang H, Gu J, Liu L, Yang J, Zhang J. Brassinosteroids function in spikelet differentiation and degeneration in rice. J Integr Plant Biol, 2019, 61: 943-963.
doi: 10.1111/jipb.12722
[23] Xiong Q, Tang G, Zhong L, He H, Chen X. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Front Plant Sci, 2018, 9: 1075.
doi: 10.3389/fpls.2018.01075
[24] Zhang W, Fu L, Men C, Yu J, Yao J, Sheng J, Xu Y, Wang Z, Liu L, Yang J, Zhang J. Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food Energy Secur, 2020, 9: e201.
[25] Li G H, Pan J F, Cui K H, Yuan M, Hu Q Q, Wang W, Mohapatra P K, Nie L, Huang J, Peng S. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: 1369.
doi: 10.3389/fpls.2017.01369
[26] Liu K, Li T, Chen Y, Huang J, Qiu Y, Li S, Wang H, Zhu A, Zhuo X, Yu F, Zhang H, Gu J, Liu L, Yang J. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258: 107946
doi: 10.1016/j.fcr.2020.107946
[27] Meng T, Wei H, Li X, Dai Q, Huo Z. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res, 2018, 228: 135-146.
doi: 10.1016/j.fcr.2018.08.024
[28] Zhang Z, Chu G, Liu L, Wang Z, Wang X, Zhang H, Yang J, Zhang J. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013, 150: 9-18.
doi: 10.1016/j.fcr.2013.06.002
[29] Bianco M D, Giustini L, Sabatini S. Spatiotemporal changes in the role of cytokinin during root development. New Phytol, 2013, 199, 324-338.
doi: 10.1111/nph.12338 pmid: 23692218
[30] Zheng C, Zhu Y, Wang C, Guo T. Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development. PLoS One, 2016, 11: e0156627.
doi: 10.1371/journal.pone.0156627
[31] Krouk G. Hormones and nitrate: a two-way connection. Plant Mol Biol, 2016, 91: 599-606.
doi: 10.1007/s11103-016-0463-x
[32] Chu G, Chen S, Xu C, Wang D, Zhang X. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
doi: 10.1016/j.fcr.2019.107625
[33] Duque L O, Villordon A. Root branching and nutrient efficiency: status and way forward in root and tuber crops. Front Plant Sci, 2019, 10: 237.
doi: 10.3389/fpls.2019.00237 pmid: 30886622
[34] Ning P, Li S, Li X, Li C. New maize hybrids had larger and deeper post-silking root than old ones. Field Crops Res, 2014, 166: 66-71.
doi: 10.1016/j.fcr.2014.06.009
[35] Santiago-Arenas R, Hadi S N, Fanshuri B A, Ullah H, Datta A. Effect of nitrogen fertilizer and cultivation method on root systems of rice subjected to alternate wetting and drying irrigation. Ann Appl Biol, 2019, 175: 388-399.
doi: 10.1111/aab.12540
[36] Xu G W, Lu D K, Wang H Z, Li Y. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manage, 2018, 203, 385-394.
doi: 10.1016/j.agwat.2018.02.033
[37] Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H. Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice. Field Crops Res, 2011, 123: 170-182.
doi: 10.1016/j.fcr.2011.05.015
[38] Zhen F, Zhou J, Mahmood A, Wang W, Chang X, Liu B, Liu L, Cao W, Zhu Y, Tang L. Quantifying the effects of short-term heat stress at booting stage on nonstructural carbohydrates remobilization in rice. Crop J, 2020, 8: 194-212.
doi: 10.1016/j.cj.2019.07.002
[39] Zhang J, Tong T, Potcho P M, Huang S, Ma L, Tang X. Nitrogen effects on yield, quality and physiological characteristics of giant rice. Agronomy, 2020, 10: 1816.
doi: 10.3390/agronomy10111816
[40] Meng T, Wei H, Li C, Dai Q, Xu K, Huo Z, Wei H, Guo B, Zhang H. Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage. J Integr Agric, 2016, 15: 1751-1762.
doi: 10.1016/S2095-3119(15)61215-1
[41] Huang L, Yang D, Li X, Peng S, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019, 233: 49-58.
doi: 10.1016/j.fcr.2019.01.005
[42] Xu D, Zhu Y, Chen Z, Han C, Hu L, Qiu S, Wu P, Liu G, Wei H, Zhang H. Yield characteristics of japonica/indica hybrids rice in the middle and lower reaches of the Yangtze River in China. J Integr Agric, 2020, 19: 2394-2406.
doi: 10.1016/S2095-3119(19)62872-8
[1] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[2] HUANG Yi-Wen, SUN Bin, CHENG Can, NIU Fu-An, ZHOU Ji-Hua, ZHANG An-Peng, TU Rong-Jian, LI Yao, YAO Yao, DAI Yu-Ting, XIE Kai-Zhen, CHEN Xiao-Rong, CAO Li-Ming, CHU Huang-Wei. QTL mapping of seed storage tolerance in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264.
[3] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[4] WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324.
[5] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[6] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[7] SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: A case study of Hunan Province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420.
[8] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[9] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[10] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[11] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[12] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[13] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[14] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[15] YUAN Shen, PENG Shao-Bing. Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1822-1831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .