Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2552-2561.doi: 10.3724/SP.J.1006.2023.21064

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Relationship between the starch properties and its surface-bound proteins in grains with hardness in Avena nuda L.

NAN Jin-Sheng1(), AN Jiang-Hong1,2, CHAI Ming-Na1, JIANG Yu-Lian1, ZHU Zhi-Qiang1, YANG Yan1, HAN Bing1,*()   

  1. 1Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School / Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010018, Inner Mongolia, China
  • Received:2022-10-05 Accepted:2023-02-10 Online:2023-09-12 Published:2023-02-27
  • Supported by:
    National Key Research and Development Program of China(2022YFE0119800);Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, and Forage Crops and Beneficial Microorganism Germplasm Resources and Molecular Breeding Team Funding(TD202103)

Abstract:

Kernel hardness can reflect the texture of wheat kernels and it is closely related to its milling performance and edible quality. The objective of this study is to explore the relationship between naked oat (Avena nuda L.) grain starch properties and its surface-bound proteins with grain hardness. In this experiment, to determine the content of total starch, amylopectin and amylose, observe the characteristics and particle size of starch granules, and identify the surface-bound proteins of starch granules by mass spectrometry, five soft and five hard naked oat germplasms were used as the materials. The results showed that the shapes of starch granules in mature grains were round, oval and irregular, and the number, volume and surface area of starch granules showed a unimodal distribution. The size of starch granules could be divided into small (particle size < 6 μm), medium (6-40 μm), and large starch granules (particle size > 40 μm). Naked oat grains were mainly composed of small and medium starch granules. The grain size distribution of starch in naked oat grains with different hardness was different. The number and volume percentage of small starch granules in soft naked oat were higher than those in hard, and the number and volume percentage of medium and large starch grains were lower than those in hard. The percentage of surface area of soft naked oat small and medium starch granules was higher than that of hard, and the percentage of surface area of large starch granules was lower than that of hard. There was a significant positive correlation between the grain hardness of naked oat and the amylopectin content. The results showed that the protein content of the starch granule surface with a size of 14 kD was higher in soft oats than in hard ones. A total of 41 proteins were identified by HPLC/MS for starch granule surface-binding proteins at 14 kD, including Vromindoline protein and oat alpha amylase trypsin inhibitor. The above results showed that the starch content, particle size distribution and starch surface-bound protein in naked oat grains were all related to grain hardness. The higher the amylopectin content, the greater the number, surface area and volume distribution of small starch granules. The higher the protein content such as Vromindoline, and the softer the naked oat kernel. This study laid the foundation for revealing the formation mechanism of grain hardness in Avena nuda L.

Key words: Avena nuda L., grain hardness, starch particle size, Vromindoline, HPLC/MS

Table 1

Information of 10 copies in naked oats"

组别
Group
材料编号
Material code
材料名称
Material name
硬度均值
Average hardness (N)
样品类型
Variety type
来源
Source
软质组
Soft group
HX317 73014-336 18.62 选育 Breeding 山西 Shanxi
HX88 燕麦 Oat 20.08 地方品种 Landrace 陕西 Shaanxi
HX106 丽江燕麦 Lijiang oat 21.62 地方品种 Landrace 云南 Yunnan
HX54 小莜麦 Little oat 21.70 地方品种 Landrace 山西 Shanxi
HX344 8399-3-4 21.89 选育 Breeding 山西 Shanxi
硬质组
Hard group
HX310 晋8713-1 Jin 8713-1 34.69 选育 Breeding 山西 Shanxi
HX268 蒙燕8202 Mengyan 8202 35.03 地方品种 Landrace 内蒙古 Inner Mongolia
HX21 冀杂2号 Jiza 2 35.47 选育 Cultivar 河北 Hebei
HX265 蒙燕7805 Mengyan 7805 36.05 地方品种 Landrace 内蒙古 Inner Mongolia
HX320 7929-1-6 37.26 选育 Breeding 山西 Shanxi

Fig. 1

Contents of total starch, amylose, and amylopectin in 10 mature grains of naked oat Different lowercase letters indicate significant difference at the 0.05 probability level. Abbreviations are the same as those given in Table 1."

Fig. 2

Microstructure of starch granules in HX317 and HX320 a-e: the starch granules of HX317; f-j: the starch granules of HX320. The scale bars of the five column pictures from left to right are 20, 10, 3, 1, and 5 μm, respectively."

Fig. 3

Number, surface area, and volume distribution of starch granules of HX317 and HX320"

Table 2

Proportion of starch granule number, surface area, and volume distributions in HX317 and HX320"

淀粉粒度分布
Starch particle size distribution
材料名称
Material name
硬度值
Hardness value
小淀粉粒
Small starch granules
( < 6 μm)
中淀粉粒
Medium starch granules (6-40 μm)
大淀粉粒
Large starch granules
( > 40 μm)
数量
Number
HX317 18.62 N 62.86 37.14 0.006
HX320 37.26 N 48.98 50.98 0.038
表面积
Surface area
HX317 18.62 N 0.027 99.79 0.016
HX320 37.26 N 0.009 98.26 1.730
体积
Volume
HX317 18.62 N 14.37 84.82 0.80
HX320 37.26 N 7.59 88.89 3.52

Fig. 4

SDS-PAGE images of TritonX-114 soluble proteins in naked oat with different hardness a and b are the proteins form whole flour and starch surface bound proteins, respectively. M: 80 kD protein marker. 1-10 represent HX317, HX88, HX106, HX54, HX344, HX310, HX268, HX21, HX265, and HX320, respectively. The further to the right the sequence, the greater the hardness value of the variety."

Table 3

Partial results of mass spectrometry of proteins at 14 kD"

蛋白编号
Protein number
蛋白名称
Protein name
分子量
Molecular weight
蛋白打分值
Protein score
序列覆盖率
Sequence coverage
来源
Source
I2E102 Vromindoline 17.0 1027 48 A. barbata
U5ZZB2 Vromindoline 2 17.0 738 48 A. insularis
I2E103 Vromindoline 14.1 604 57 A. eriantha
R4I506 Vromindoline 1.3 16.8 602 33 A. sativa
I2E0Z8 Vromindoline 16.8 527 29 A. strigosa
R4I3J6 Vromindoline 3.1 15.9 527 48 A. sativa
R4I3J4 Vromindoline 1.2 16.8 462 29 A. sativa
I2E108 Vromindoline 15.8 406 48 A. marcoccana
R4I508 Vromindoline 3.2 15.9 333 46 A. sativa
A0A1B2LQE3 Avena alpha amylase trypsin inhibitor 17.2 351 41 A. insularis
A0A1B2LQE9 Avena alpha amylase trypsin inhibitor 17.1 321 41 A. insularis
A0A1B2LQE6 Avena alpha amylase trypsin inhibitor 16.9 179 35 A. magna
A0A1B2LQB5 Avena alpha amylase trypsin inhibitor 16.1 161 33 A. marcoccana
A0A1B2LQF0 Avena alpha amylase trypsin inhibitor 17.1 146 32 A. barbata
A0A1B2LQD6 Avena alpha amylase trypsin inhibitor-2 16.5 101 30 A. sativa
A0A1B2LQB9 Avena alpha amylase trypsin inhibitor 15.9 99 27 A. murphyi
A0A1B2LQD2 Avena alpha amylase trypsin inhibitor-2 16.3 89 30 A. barbata
I4EP66 Avenin 28.6 318 24 A. insularis
I4EP56 Avenin 29.2 300 22 A. longiglumis
G8ZCT8 Avenin (fragment) 28.2 240 14 A. canariensis
G8ZCU6 Avenin (fragment) 24.3 213 19 A. prostrata
L0L4J7 Gliadin-like 24.5 262 19 A. sativa
L0L833 Gliadin-like 21.4 65 8 A. sativa
O49258 12S globulin 58.2 579 20 A. sativa
O49257 12S globulin 53.4 562 26 A. sativa
P14812 12S seed storage globulin 2 58.6 749 31 A. sativa
Q38780 11S globulin 59.4 604 23 A. sativa

Fig. 5

Mass spectra of identified unique peptides of I2E102 and A0A1B2LQE3"

Fig. 6

Sequence alignment of nine Vromindoline and eight AATI proteins A: the evolutionary tree of nine VIN proteins and eight AATI proteins; B: the sequence alignment of VIN proteins, and the red box is the tryptophan-rich region."

[1] 陈锋, 李根英, 耿洪伟, 夏兰芹, 夏先春, 何中虎. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005, 38: 1088-1094.
Chen F, Li G Y, Geng H W, Xia L Q, Xia X C, He Z H. Review and prospect of wheat grain hardness and its molecular genetic basis. Sci Agric Sin, 2005, 38: 1088-1094. (in Chinese with English abstract)
[2] 安江红, 张文静, 赵瑛琳, 韩冰, 南金生. 麦类作物籽粒硬度的研究进展. 北方农业学报, 2020, 48(4): 40-47.
doi: 10.12190/j.issn.2096-1197.2020.04.06
An J H, Zhang W J, Zhao Y L, Han B, Nan J S. Research progress on the grain hardness of Triticeae crops. J Northern Agric, 2020, 48(4): 40-47. (in Chinese with English abstract)
[3] Peltonen-sainio, Muurinen S, Vilppu M, Rajala A, Gates F, Kirkkari A. Germination and grain vigor of naked oat in response to grain moisture at harvest. J Agric Sci, 2001, 127: 147-156.
[4] Stenvert N L, Kingswood K. The influence of the physical structure of the protein matrix on wheat hardness. J Sci Food Agric, 1977, 28: 11-19.
doi: 10.1002/(ISSN)1097-0010
[5] Barlow K K, Buttrose M S, Simmonds D H, Vesk M. The nature of the starch-protein interface in wheat endosperm. Cereal Chem, 1973, 50: 443-454.
[6] Greenwell P, Schofield J D. A Starch granule protein associated with endosperm softness in wheat. Cereal Chem, 1986, 63: 379-380.
[7] 郭世华. 中国小麦籽粒硬度的生化和分子标记研究. 山东农业大学博士学位论文, 山东泰安, 2003. pp 6-7.
Guo S H. Biochemical and Molecular Markers of Chinese Wheat Grain Hardness. PhD Dissertation of Graduate School of Shandong Agricultural University, Tai’an, Shandong, China, 2003. pp 6-7. (in Chinese with English abstract)
[8] Blochet J E, Chevalier C, Forest E, Pebay-Peyroula E, Gautier M F, Joudrier P, Pézolet M, Marion D. Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett, 1993, 329: 336-340.
doi: 10.1016/0014-5793(93)80249-t pmid: 8365477
[9] Marion D, Clark D C. Wheat lipids and lipid-binding proteins: structure and function. Wheat Struct, 1995: 245-260.
[10] Bhave M, Morris C F. Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol, 2008, 66: 221-231.
doi: 10.1007/s11103-007-9264-6 pmid: 18049797
[11] Gazza L, Taddei F, Conti S, Gazzelloni G, Muccilli V, Janni M, D’Ovidio R, Alfieri M, Redaelli R, Pogna N E. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Mol Genet Genom, 2015, 290: 39-54.
doi: 10.1007/s00438-014-0894-5
[12] 安江红, 张文静, 杨晓虹, 南金生, 杨燕, 闫明霞, 韩冰. 2种裸燕麦籽粒硬度测定方法比较. 作物杂志, 2021, (6): 28-35.
An J H, Zhang W J, Yang X H, Nan J S, Yang Y, Yan M X, Han B. Comparison of two methods for measuring grain hardness of naked oats. Crops, 2021, (6): 28-35. (in Chinese with English abstract)
[13] 刘刚. 燕麦淀粉和蛋白的提取及理化性质研究. 武汉工业学院硕士学位论文, 湖北武汉, 2008. pp 9-12.
Liu G. Extraction and Physicochemical Properties of Oat Starch and Protein. MS Thesis of Graduate School of Wuhan Institute of Technology, Wuhan, Hubei, China, 2008. pp 9-12. (in Chinese with English abstract)
[14] 霍华蕾, 郭坚, 罗杰, 何光源. 种子中Puroindoline蛋白的SDS-PAGE分析. 生物技术通讯, 2005, (2): 153-155.
Huo H L, Guo J, Luo J, He G Y. SDS-PAGE analysis of Puroindoline protein in seed. Lett Biotechnol, 2005, (2): 153-155. (in Chinese with English abstract)
[15] 王子宁, 郭北海. 小麦地方品种SDS-PAGE分析. 华北农学报, 1992, (2): 35-39.
doi: 10.3321/j.issn:1000-7091.1992.02.006
Wang Z N, Guo B H. SDS-PAGE Analysis of Wheat Landraces. North China Agric J, 1992, (2): 35-39. (in Chinese with English abstract)
[16] 王霞霞, 柴守玺, 常磊, 柴继宽, 徐智明. 燕麦种子蛋白质组的GeLC-MS/MS分析. 草地学报, 2012, 20(1): 108-115.
doi: 10.11733/j.issn.1007-0435.2012.01.018
Wang X X, Chai S X, Chang L, Chai J K, Xu Z M. GeLC-MS/MS analysis of oat seed proteome. Acta Agrest Sin, 2012, 20(1): 108-115. (in Chinese with English abstract)
[17] 徐云姬, 李银银, 钱希旸, 王志琴, 杨建昌. 三种禾谷类作物强、弱势粒淀粉粒形态与粒度分布的比较. 作物学报, 2016, 42: 70-81.
Xu Y J, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Comparison of starch grain morphology and size distribution in superior and inferior grains of three cereal crops. Acta Agron Sin, 2016, 42: 70-81. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00070
[18] Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem, 1981, 256: 1604-1607.
pmid: 6257680
[19] Gautier M F, Aleman M E, Guirao A, Marion D, Joudrier P. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol, 1994, 25: 43-57.
pmid: 7516201
[20] 常成, 张海萍, 李保云, 刘广田. 小麦籽粒发育时期Puroindolines蛋白与硬度的关系. 麦类作物学报, 2007, 27: 630-633.
Chang C, Zhang H P, Li B Y, Liu G T. The relationship between Puroindoline protein during grain development and kernel hardness of common wheat. J Triticeae Crops, 2007, 27: 630-633. (in Chinese with English abstract)
[21] 赵法茂, 蔡瑞国, 毕建杰, 肖军, 王宪泽. 小麦籽粒淀粉分支酶同种型SBE IIb的亚细胞定位及遗传多样性. 作物学报, 2009, 35: 952-957.
Zhao F M, Cai R G, Bi J J, Xiao J, Wang X Z. Subcellular localization and genetic polymorphism of isoform of starch branching enzyme (SBE IIb) in wheat grain. Acta Agron Sin, 2009, 35: 952-957. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00952
[22] Lillemo M, Morris C. A leucine to proline mutation in Puroindoline b is frequently present in hard wheats from northern Europe. Theor Appl Genet, 2000, 100: 1100-1107.
doi: 10.1007/s001220051392
[23] 秦海霞. 小麦淀粉表面极性脂对籽粒硬度的影响及其生理机制. 河南农业大学硕士学位论文, 河南郑州, 2017. pp 2-3.
Qin H X. Effects of Surface Polar Lipids on Wheat Starch on Grain Hardness and Its Physiological Mechanism. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017. pp 2-3. (in Chinese with English abstract)
[24] Ma D Y, Qin H X, Ding H N, Zhang J, Wang C Y, Guo T C. Surface lipids play a role in the interaction of puroindolines with wheat starch and kernel hardness. Cereal Chem J, 2016, 93: 523-528.
doi: 10.1094/CCHEM-11-15-0224-R
[25] Zhang G, Hamaker B R. A three component interaction among starch, protein, and free fatty acids revealed by pasting profiles. J Agric Food Chem, 2003, 51: 2797-2800.
doi: 10.1021/jf0300341
[26] Zhang G, Hamaker B R. Sorghum (Sorghum bicolor L.Moench) flour pasting properties influenced by free fatty acids and protein. Cereal Chem, 2005, 82: 534-540.
doi: 10.1094/CC-82-0534
[27] Finnie S, Jeannotte R, Morris C, Faubion J M. Variation in polar lipid composition among near-isogenic wheat lines possessing different puroindoline haplotypes. J Cereal Sci, 2010, 51: 66-72.
doi: 10.1016/j.jcs.2009.09.006
[28] Wang H H, Huagn Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun, 2020, 11: 5346.
doi: 10.1038/s41467-020-19196-9 pmid: 33093471
[29] Ohm J, Chung O. Relationships of free lipids with quality factors in hard winter wheat flours. Cereal Chem, 2002, 79: 274-278.
doi: 10.1094/CCHEM.2002.79.2.274
[1] LIU Pei-Xun,MA Xiao-Fei,WAN Hong-Shen,ZHENG Jian-Min,LUO Jiang-Tao,PU Zong-Jun. Comparative proteomic analysis of two wheat genotypes with contrasting grain softness index [J]. Acta Agronomica Sinica, 2020, 46(8): 1275-1282.
[2] SHI Gui-Ying,SHANG Xun-Wu,WANG Hua-Jun,MA Xiao-Le,HU Bing-Fen,LI Chang-Sheng. Responses of Flour Quality and Dough Rheological Properties to Stiobion avenae F. Inoculated in Spring Wheat [J]. Acta Agron Sin, 2009, 35(12): 2273-2279.
[3] LI Gen-Ying;XIA Xian-Chun;HE Zhong-Hu;SUN Qi-Xin;HUANG Cheng-Yan. Distribution of Grain Hardness and Puroindoline Alleles in Landraces, Historical and Current Wheats in Shandong Province [J]. Acta Agron Sin, 2007, 33(08): 1372-1374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[6] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[7] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[8] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[9] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .
[10] Xia Zhongyan. STUDIES ON INHERITANCE AND SELECTION OF THE LEAF SHAPE IN KENG RICE[J]. Acta Agron Sin, 1983, 9(04): 275 -282 .