欢迎访问作物学报,今天是

作物学报 ›› 2008, Vol. 34 ›› Issue (03): 361-368.doi: 10.3724/SP.J.1006.2008.00361

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析

邢光南1,**; 周斌1,**; 赵团结1; 喻德跃1; 邢邯1; 陈受宜2; 盖钧镒1,*   

  1. 1 南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室, 江苏南京210095; 2 中国科学院遗传与发育生物学研究所, 北京100101
  • 收稿日期:2007-05-31 修回日期:1900-01-01 出版日期:2008-03-12 发布日期:2008-03-12
  • 通讯作者: 盖钧镒

Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean

XING Guang-Nan1**,ZHOU Bin1**,ZHAO Tuan-Jie1,YU De-Yue1,XING Han1,HEN Shou-Yi2,GAI Jun-Yi1*   

  1. 1 Soybean Research Institute of Nanjing Agricultural University/ National Center for Soybean Improvement/ National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing 210095, Jiangsu, China; 2 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2007-05-31 Revised:1900-01-01 Online:2008-03-12 Published:2008-03-12
  • Contact: GAI Jun-Yi

摘要:

筛豆龟蝽是我国南方大豆的主要害虫之一,本研究旨在定位筛豆龟蝽抗性QTL,分析其稳定性,为大豆抗筛豆龟蝽育种提供参考。以科丰1号×南农1138-2组合衍生的184个重组自交系群体NJRIKY(简称KY)和皖82-178×通山薄皮黄豆甲组合衍生的142个重组自交系群体NJRIWT(简称WT)为材料,2004—2006在田间自然虫源下鉴定了筛豆龟蝽抗性。不同年份内以黑霉程度为指标的方差分析结果表明家系间差异在每年都达极显著水平,遗传变异系数都相当大,遗传率中等偏高。利用Windows QTL Cartographer Version 2.5的复合区间作图法(CIM),KY群体的抗性QTL主要位于D1a和C2连锁群,WT群体的抗性QTL主要位于H和D1b连锁群。KY群体3年均检测出的qRMC-d1a-1位于D1a连锁群,贡献率为7.6%~31.4%;2005和2006两年均检测出的qRMC-c2-1位于C2连锁群,与环境有互作,效应相对较小;抗性等位基因来自南农1138-2;qRMC-d1a-1和qRMC-h-1在2005年和2006年存在显著的互作。WT群体连锁群H上的qRMC-h-1在3年中都被检测到,贡献率为16.3%~36.2%;D1b连锁群上的qRMC-d1b-2在2004和2005年被检测到,效应相对较小;抗性等位基因来自通山薄皮黄豆甲。虽然WT群体D1b和H连锁群上的这2个QTL在KY群体中也有一年被检测到,但2个群体抗性位点基本上是不同的。QTL在不同环境被重复检出,说明大豆对筛豆龟蝽的抗性由稳定的主效QTL所控制,其2侧邻近标记有希望用于标记辅助选择育种。

关键词: 大豆[Glycine max (L.) Merr.], 筛豆龟蝽[Megacota cribraria (Fabricius)], 抗虫性, QTL定位

Abstract:

Globular stink bug [Megacota cribraria (Fabricius)] is one of the important pests for soybean [Glycine max (L.) Merr.] in the central and southern China. However, very few reports on soybean resistant to M. cribraria were found in the literature. The objectives of the present study were to find QTLs associated with resistance to M. cribraria in soybean and to analyze the stability of mapped QTLs among years by using two RIL populations, NJRIKY (or KY) and NJRIWT (or WT) derived from the crosses of Kefeng 1 × Nannong 1138-2 and Wan 82-178 × Tongshanbopihuangdoujia, respectively. The 184 lines of KY and 142 lines of WT were tested and the percentage of black mildew on stem and purple spots on leaves was used as indicator to evaluate their resistance to M. cribraria under natural infestation during 2004–2006. There existed significant differences among lines in the two RIL populations during the three years, with heritability of 66.5%–88.8% in KY and 61.3%–84.8% in WT. The composite interval mapping (CIM) of the software Windows QTL Cartographer Version 2.5 was used to map QTLs. The linkage group D1a and C2 in KY and the linkage group H and D1b in WT were found to be related with resistance to L. indicata. The QTL qRMC-d1a-1 on Linkage group D1a was detected consistently associated with reaction to M. cribraria in KY during the three years, which accounted for 7.6%–31.4% of phenotypic variation; the QTL qRMC-c2-1 on linkage group C2 was detected in 2005–2006, which accounted for less phenotypic variation than the former one; the resistance alleles were from Nannong 1138-2. There appeared significant interactions between qRMC-d1a-1 and qRMC-h-1 in KY in 2005 and 2006. The QTL qRMC-h-1 on linkage group H was detected also consistently associated with reaction to M. cribraria in WT during the three years, which accounted for 16.3%–36.2% of phenotypic variation; the QTL qRMC-d1b-2 on linkage group D1b was detected in 2004-2005, which accounted for less phenotypic variation than the former one; the resistant alleles were from Tongshanbopihuangdoujia. Therefore, different QTLs conferred resistance to M. cribraria in KY and WT basically although the two QTLs in the latter population were also identified in one year in the former population. The fact that the QTLs were repeatedly detected in different environments indicated the resistance was controlled stably by the main QTLs. Based on the results, it is inferred that the markers linked to the detected QTLs should be useful for marker-assisted selection for resistance to M. cribraria in soybean.

Key words: Soybean [Glycine max (L.) Merr, Globular stink bug [Megacota cribraria (Fabricius)], Resistance to insects, QTL Mapping

[1] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[2] 杨晓梦,李霞,普晓英,杜娟,MuhammadKazimAli,杨加珍,曾亚文,杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[3] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[4] 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828.
[5] 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537.
[6] 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521.
[7] 刘江宁,王楚鑫,张宏根,缪一栩,高海林,许作鹏,刘巧泉,汤述翥. 水稻黑条矮缩病抗性QTL定位[J]. 作物学报, 2019, 45(11): 1664-1671.
[8] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[9] 代资举,王新涛,杨青,王艳,张莹莹,席章营,李保全. 玉米雄穗分枝数主效QTL定位及qTBN5近等基因系构建[J]. 作物学报, 2018, 44(8): 1127-1135.
[10] 董骥驰,杨靖,郭涛,陈立凯,陈志强,王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位[J]. 作物学报, 2018, 44(6): 938-946.
[11] 彭伟业,孙平勇,潘素君,李魏,戴良英. 水稻品种魔王谷粒形、剑叶性状和株高QTL定位[J]. 作物学报, 2018, 44(11): 1673-1680.
[12] 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484.
[13] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396.
[14] 胡德益,蔡露,陈光登,张锡洲,刘春吉. 不同磷水平下大麦分蘖期磷效率相关性状QTL定位分析[J]. 作物学报, 2017, 43(12): 1746-1759.
[15] 朱协飞**,王鹏**,司占峰,张天真*. 基于陆地棉背景的海岛棉染色体片段导入系产量性状QTL定位[J]. 作物学报, 2017, 43(12): 1784-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .