欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1452-1458.doi: 10.3724/SP.J.1006.2014.01452

• 耕作栽培·生理生化 • 上一篇    下一篇

轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响

秦舒浩1,2,曹莉1,2,张俊莲1,师尚礼3,王蒂1   

  1. 1甘肃省作物遗传改良与种质创新重点实验室 / 甘肃农业大学园艺学院, 甘肃兰州 730070; 2甘肃省干旱生境作物学重点实验室, 甘肃兰州 730070; 3草业生态系统教育部重点实验室, 甘肃兰州 730070
  • 收稿日期:2013-11-18 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 基金资助:

    本研究由中国博士后科学基金项目(2012M512042), 国家自然科学基金项目(31260311)和教育部重点项目(212185)资助。

Effect of Rotation of Leguminous Plants on Soil Available Nutrients and Physical and Chemical Properties in Continuous Cropping Potato Field

QIN Shu-Hao1,2,CAO Li1,2,ZHANG Jun-Lian1,SHI Shang-Li3,WANG Di1   

  1. 1 Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement / College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Key Laboratory of Arid land Crop Science, Lanzhou 730070, China; 3 Key Laboratory of Grassland Ecology System, Ministry of Education, Lanzhou 730070, China
  • Received:2013-11-18 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03

摘要:

合理轮作天蓝苜蓿 (Medicago lupulina L.)、陇东苜蓿(Medicago sativa L.)和箭筈豌豆(Vicia sativa L.)3种豆科植物对马铃薯连作田土壤速效氮、速效磷及速效钾含量有不同程度的促进作用。对于马铃薯2年以上连作田,轮作3种豆科植物均能起到提高土壤氮素有效性的作用,速效氮含量最高提高476%,且可显著提高3年以上连作田速效磷含量,增幅最高可达207%。对于3~4年连作田,轮作天蓝苜蓿可提高土壤速效钾含量,其他连作年限及轮作箭筈豌豆和陇东苜蓿均没有提高土壤速效钾含量。轮作豆科植物后,不同连作年限马铃薯连作田土壤EC值均显著下降,与对照相比,土壤的EC值最大降低69.7%,说明实施马铃薯-豆科植物轮作对防止马铃薯连作田土壤盐渍化有显著效果。轮作豆科植物使连作田土壤脲酶、碱性磷酸酶和过氧化氢酶活性均显著提高。从第2年连作开始,轮作豆科植物对后茬马铃薯产量产生明显影响,第3~4年连作期间,轮作天蓝苜蓿和箭筈豌豆对后茬马铃薯增产效果较明显。

关键词: 马铃薯连作田, 轮作豆科植物, 土壤速效养分, 土壤电导率, 土壤酶活性

Abstract:

Soil available nitrogen, soil available phosphorus and soil available potassium contents were improved to some extent by the rotation of Medicago lupulina, Longdong alfalfa (Medicago sativa) and common vetch (Vicia sativa). Soil available nitrogen content was greatly increased for 2 or more -year continuous cropping field by the rotation of the three leguminous plants, and the maximum increase reached 476%. Soil available phosphorus content was greatly increased for 3 or more-year continuous cropping field by the rotation of Medicago lupulina L. and Medicago sativa L., and the maximum increase was 207%. Soil available potassium content was increased for 3–4 year continuous cropping field by the rotation of Medicago lupulina, which was not observed for other continuous cropping fields under the rotation of Vicia sativa and Medicago sativa. Soil conductivity was significantly decreased by the rotation of three leguminous plants, with the maximum decrease of 69.7% compared with CK. This result indicated soil salinization for continuous cropping field could be prevented effectively by practicing the rotation of leguminous plants. Moreover, the activities of urease, alkaline phosphatase and hydrogen peroxidase were significantly increased by practicing leguminous plants rotation. The significant effects of rotation of leguminous plants on next-cropping-potato yield were observed from the second year of potato continuous cropping. And during the third to fourth years of potato continuous cropping, potato yield was increased by the rotation of Medicago lupulina and common vetch.

Key words: Potato continuous cropping field, Rotation leguminous plants, Soil available nutrients, Soil conductivity, Soil enzyme

[1]Lithourgidis A S, Damalas C A, Gagianas A A. Long term yield patterns for continuous winter wheat cropping in northern Greece. Europ J Agron, 2006, 25: 208–214



[2]李春格, 李晓鸣, 王敬国. 大豆连作对土体和根际微生物群落功能的影响. 生态学报, 2006, 26: 1144–1150



Li C G, Li X M, Wang J G. Effect of soybean continuous cropping on bulk and rhizosphere soil microbial community function. Acta Ecol Sin, 2006, 26: 1144–1150 (in Chinese with English abstract)



[3]裴国平, 王蒂, 张俊莲. 马铃薯连作障碍产生的原因与防治措施. 广东农业科学, 2010, (6): 30–32



Pei G P, Wang D, Zhang J L. Study on the occurring reasons and controls of continuous cropping obstacle in potato. Agric Sci Guangdong, 2010, (6): 30–32 (in Chinese with English abstract)



[4]Van Elsas J D, Garbeva P, Salles J. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation, 2002, 13: 29–40



[5]胡宇, 郭天文, 张绪成. 旱地马铃薯连作对土壤养分的影响. 安徽农业科学, 2009, 37: 5436–5439



Hu Y, Guo T W, Zhang X C. Effect of potato continuous cropping on soil nutrients in dry land. J Anhui Agric Sci, 2009, 37: 5436–5439 (in Chinese with English abstract)



[6]郑良永, 胡剑非, 林昌华, 唐群锋, 郭巧云. 作物连作障碍的产生及防治. 热带农业科学, 2005, 25(2): 58–62



Zheng L Y, Hu J F, Lin C H, Tang Q F, Guo Q Y. The production of succession cropping obstacles and its prevention and cure steps. Chin J Tropical Agric, 2005, 25(2): 58–62 (in Chinese with English abstract)



[7]杨成德, 龙瑞军, 陈秀蓉, 徐长林, 薛莉. 东祁连山高寒灌丛草地土壤微生物量及土壤酶季节性动态特征. 草业学报, 2011, 12, 20(6): 135–142



Yang C D, Long R J, Chen X R, Xu C L, Xue L. Seasonal dynamics in soil microbial biomass and enzymatic activities under different alpine brushlands of the Eastern Qilian Mountains. Acta Prata Sin, 2011, 12, 20(6): 135–142 (in Chinese with English abstract)



[8]张莉, 王长庭, 刘伟, 王启兰, 李里, 向泽宇. 不同建植期人工草地优势种植物根系活力、群落特征及土壤环境的关系. 草业学报, 2012, 21(5): 185–194



Zhang L, Wang C T, Liu W, Wang Q L, Li L, Xiang Z Y. Relationships of dominant species root activity, plant community characteristics and soil micro-environment in artificial grassland over different cultivation periods. Acta Prata Sin, 2012, 21(5): 185–194 (in Chinese with English abstract)



[9]孙秀山, 封海胜, 万书波, 左学青. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用. 作物学报, 2001, 27: 617–620



Sun X S, Feng H S, Wan S B, Zuo X Q. Changes of main microbial strains and enzymes activities in peanut continuous cropping soil and their interactions. Acta Agron Sin, 2001, 27: 617–620 (in Chinese with English abstract).



[10]王树起, 韩晓增, 乔云发, 王守宇, 李晓慧, 许艳丽. 寒地黑土大豆轮作与连作不同年限土壤酶活性及相关肥力因子的变化. 大豆科学, 2009, 28: 611–615



Wang S Q, Han X Z, Qiao Y F, Wang S Y, Li X H, Xu Y L. Variation of soil enzymes activity and relevant nutrients at different years of soybean (Glycine max L. ) rotation, alternate and continuous cropping. Soybean Sci, 2009, 28: 611–615 (in Chinese with English abstract)



[11]孔凡磊, 陈阜, 张海林. 轮耕对土壤物理性状和冬小麦产量的影响. 农业工程学报, 2010, 26(8): 150–155



Kong F L, Chen F, Zhang H L. Effects of rotational tillage on soil physical properties and winter wheat yield. Transact CSAE, 2010, 26(8): 150–155 (in Chinese with English abstract)



[12]Alva A K, Marcos J, Stockle C, Reddy V R, Timlin D. A crop simulation model for predicting yield and fate of nitrogen in irrigated potato rotation cropping system. J Crop Improv, 2010, 4: 142–152



[13]Carter M R, Peters R D, Sanderson J B. Influence of conservation tillage and rotation length on potato productivity, tuber disease, and soil quality parameters on a fine sandy loam in eastern Canada. Soil Till Res, 2001, 63: 1–13



[14]Lynch D H, Zheng Z, Zebarth B J, Martin R C. Organic amendments effects on tuber yield, plant N uptake and soil mineral N under organic potato production. Renew Agric Food Syst, 2008, 23, 250–259



[15]Ojaghian M R, Cui Z Q, Xie G L, Li B, Zhang J Z. Brassica green manure rotation crops reduce potato stem rot caused by Sclerotinia sclerotium. Austr Plant Pathol, 2012, 41: 347–349



[16]鲍士旦主编. 土壤农化分析. 北京: 中国农业出版社, 1999



Bao S D. Analysis of Soil Agricultural Chemistry. Beijing: China Agriculture Press, 1999 (in Chinese)



[17]孙权. 农业资源与环境质量分析方法. 银川: 宁夏人民出版社, 2004. p 12



Sun Q. Analysis Method of Agricultural Resource and Environmental Quality. Yinchuan: Ningxia People’s Press, 2004 (in Chinese)



[18]中国土壤学会农业化学专业委员会. 土壤农业化学常规分析方法. 北京: 科学出版社, 1986. pp 49–52



Agricultural Chemical Professional Committee of China Soil Society. Method for Soil Agricultural and Chemical Routine Analysis. Beijing: Science Press, 1986. pp 49–52 (in Chinese)



[19]周礼恺. 土壤酶学. 北京: 科学出版社, 1987



Zhou L K. Soil Enzymology. Beijing: Science Press, 1987 (in Chinese)



[20]于广武, 许艳丽, 刘晓冰, 王光华, 鲁振明. 大豆连作障碍机制研究初报. 大豆科学, 1993, 12: 237–243



Yu GW, Xu Y L, Liu X B, Wang G H, Lu Z M. Primary study on barrier caused by continuous soybean cropping. Soybean Sci, 1993, 12: 237–243 (in Chinese with English abstract)



[21]Olk D C, Anders M M, Filley T R, Isbell C. Crop nitrogen uptake and soil phenols accumulation under continuous rice cropping in Arkansas. Soil Biol & Biochem, 2009, 73: 952–960



[22]郝旺林, 梁银丽, 朱艳丽, 吴兴, 林兴军, 罗安荣. 农田粮-菜轮作体系的生产效益与土壤养分特征. 水土保持通报, 2011, 31(2): 46–51



Hao W L, Liang Y L, Zhu Y L, Wu X, Lin X J, Luo A R. Production efficiency and soil nutrient characteristics in food-vegetable rotation systems. Bull Soil Water Conserv, 2011, 31(2): 46–51 (in Chinese with English abstract)



[23]岳阳, 王亚军, 谢忠奎, 张亚娟. 砾石覆盖年限对连作农田土壤微生物和酶活性的影响. 水土保持学报, 2011, 31(5): 66–68



Yue Y, Wang Y J, Xie Z K, Zhang Y J. Temporal effects of gravel-sand mulching on soil microbial population and soil enzyme activity in croplands with continuous cultivation. Bull Soil Water Conserv, 2011, 31(5): 66–68 (in Chinese with English abstract)



[24]李勇. 试论土壤酶活性与土壤肥力. 土壤通报, 1989, 20: 190–193



Li Y. The relationship of soil enzyme and soil fertilizer. Bull Soil, 1989, 20: 190–193 (in Chinese with English abstract)



[25]Taylor J P, Wilson B, Mills M S, Burns R G. Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques. Soil Biol Biochem, 2002, 34: 387–401



[26]Glenn J K, Gold M N. Purification and characterization of an extracellular Mn (II)-dependenperoxidase from the lignin-degading basidiomycetes, phancerochaete chrysosporium. Aich biochem, 1985, 242: 329–341



[27]索南吉, 谈焉荣, 朱炜歆, 顾振宽, 杜国祯. 青藏高原东缘不同草地类型土壤酶活性研究. 草业学报, 2012, 21(4): 10–15



Suo N J, Tan Y R, Zhu W X, Gu Z K, Du G Z. A study on soil enzyme activity in four different grasslands of the eastern Tibetan Plateau. Acta Prata Sin, 2012, 21(4): 10–15 (in Chinese with English abstract)



[28]Peters R D, Sturz A V, Carter M R, Sanderson J B. Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Can J Soil Sci, 2004, 84: 397–402



[29]Larkin R P, Honeycutt C W. Effects of different 3-year cropping systems on soil microbial communities and Rhizoctonia diseases of potato. Phytopathology, 2006, 96: 68–79



[30]Carter, M R, Kunelius H T, Sanderson J B, Kimpinskia J, PlattaH W, Bolinder M A. Productivity parameters and soil health dynamics under long-term 2-year potato rotations in Atlantic Canada. Soil &Till Res, 2003,72: 153–168



[31]Mohr R M, Volkmar K, Derksen D A, Irvine R B, Khakbazan M, McLaren D L, Monreal M A, Moulin A P, Tomasiewicz D J. Effect of rotation on crop yield and quality in an irrigated potato system. Am J Pot Res, 2011, 88: 346–359

[1] 要凯,赵章平,康益晨,张卫娜,石铭福,杨昕宇,范艳玲,秦舒浩. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响[J]. 作物学报, 2019, 45(8): 1286-1292.
[2] 陈鸿飞,庞晓敏,张仁,张志兴,徐倩华,方长旬,李经勇,林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响[J]. 作物学报, 2017, 43(10): 1507-1517.
[3] 叶德练,齐瑞娟,管大海,李建民,张明才,李召虎. 免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应[J]. 作物学报, 2015, 41(08): 1212-1219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!