欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1459-1469.doi: 10.3724/SP.J.1006.2014.01459

• 耕作栽培·生理生化 • 上一篇    下一篇

不同降水年型旱地小麦休闲期耕作的蓄水增产效应

孙敏,温斐斐,高志强*,任爱霞,邓妍,赵维峰,赵红梅   

  1. 山西农业大学农学院, 山西太谷 030801
  • 收稿日期:2013-11-19 修回日期:2014-06-04 出版日期:2014-08-12 网络出版日期:2014-06-12
  • 通讯作者: 高志强, E-mail: gaozhiqiang1964@126.com, Tel: 0354-6287187
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-03-01-24), 国家自然科学基金项目(31101112), 山西省回国留学人员科研项目(2009037)和山西省青年基金项目(2010021028-3)资助。

Effects of Farming Practice during Fallow Period on Soil Water Storage and Yield of Dryland Wheat in Different Rainfall Years

SUN Min,WEN Fei-Fei,GAO Zhi-Qiang*,REN Ai-Xia,DENG Yan,ZHAO Wei-Feng,ZHAO Hong-Mei,YANG Zhen-Ping,MIAO Guo-Yuan   

  1. College of Crop Science, Shanxi Agricultural University, Taigu 030801, China
  • Received:2013-11-19 Revised:2014-06-04 Published:2014-08-12 Published online:2014-06-12
  • Contact: 高志强, E-mail: gaozhiqiang1964@126.com, Tel: 0354-6287187

摘要:

为明确旱地小麦通过休闲期耕作实现蓄水增产的技术途径, 2009—2012年连续3个小麦生长季, 在山西闻喜县进行了休闲期深翻、深松或无耕作的田间试验, 以明确不同耕作措施对土壤水分变化、小麦产量形成的影响。结果表明, 深翻和深松处理播种期0~300 cm土壤蓄水量增加, 枯水年增加63~91 mm, 平水年增加41~70 mm, 丰水年增加54~74 mm, 尤其在枯水年和丰水年生育后期蓄水效果仍显著, 休闲期土壤蓄水效率显著提高, 枯水年提高147%~205%。深翻和深松处理在枯水年和丰水年可促进小麦生育后期吸收300 cm土层土壤水分, 使产量和产量构成因素显著提高, 尤其在枯水年产量提高34%~45%。在平水年, 穗数、穗粒数和产量显著提高, 且在平水年和丰水年深翻和深松处理对产量构成因素中的穗数影响最大。深翻和深松处理后降水生产效率和水分利用效率显著提高。不同降水年型休闲期耕作条件下, 穗数与播种至拔节期120~180 cm、拔节至开花期60~120 cm土层土壤贮水减少量关系密切, 穗粒数与播种至拔节期60~120 cm土层关系密切, 产量与拔节至开花期60~120 cm、开花至成熟期 120~180 cm土层关系密切。总之, 在本研究条件下, 旱地小麦休闲期深翻或深松耕作有利于蓄积休闲期降水, 改善底墒, 尤其枯水年的效果更为明显; 有利于增加土壤水分, 促进小麦向深层吸收土壤水分, 优化产量构成, 实现增产。在枯水年和平水年, 以休闲期深翻效果较好, 在丰水年以休闲期深松效果较好。

关键词: 降水年型, 旱地小麦, 深翻和深松, 土壤水分, 产量, 水分利用效率

Abstract:

Soil water storage (SWS) is the critical factor influencing wheat yield in dryland area. A field experiment was carried out in Wenxi County, Shanxi Province from July 2009 to June 2012 (three cropping seasons) to study the effect of tillage during fallow period on annual SWS and wheat yield. Compared to no tillage (NT), deep plowing (DP), subsoiling (SS) increased SWS in 0–300 cm soil layer at sowing stage by 63–91 mm in dry year, 41–70 mm in normal rainfall year and 54–74 mm in humid year. The annual SWS efficiency was much improved by tillage during fallow period, especially the late growth stage of wheat in dry and humid years, resulting in increases of grain yield and yield components. In dry year, wheat yield was enhanced as high as 34% (SS) and 45% (DP). In normal rainfall year, spike number, grain number per spike, and grain yield significantly increased in DP and SS compared to NT. In yield components, spike number received the largest effect of tillage, either DP or SS, under normal and rich rainfall conditions. In DP and SS treatments, spike number had close correlation with120–180 cm soil water reduction from sowing to jointing and 60–120 cm soil water reduction from jointing to anthesis, grain number per spike was correlated with 60–120 cm soil water reduction from sowing to jointing, and grain yield was correlated with 60–120 cm soil water reduction from jointing to anthesis and 120–180 cm soil water reduction from anthesis to maturity. Clear, tillage during fallow period could significantly increase rainfall productive efficiency and water use efficiency in rainfed field. DP and SS have positive effects on SWS during fallow period and utilization of water in deep soil layers. The improved water utilization is the basis for improved yield components and high yield ultimately. Tillage during fallow period is recommended with DP practice in dry and normal rainfall years and SS practice in humid year.

Key words: Rainfall years, Dryland wheatDeep plowing and subsoiling, Soil water, Yield, Water use efficiency

[1]Bhatt R, Khera K L. Effect of tillage and mode of straw mulch application on soil erosion in the simultaneous tract of Punjab, Soil Till Res, 2006, 88: 107–115



[2]Riley HCF, Bleken M A, Abrahamsen S. Effects of alternative tillage systems on soil quality and yield of spring cereals on salty clay loam and sandy loam soils in the cool, wet climate of central Norway. Soil Till Res, 2005, 80: 79–93



[3]张树清, 孙大鹏. 甘肃省旱作土壤蓄水保墒培肥综合技术. 干旱地区农业研究, 1998, 16(3): 11–14



Zhang S Q, Sun D P. Comprehensive techniques of soil moisture retention and fertility betterment on dryland in Gansu. Agric Res Arid Areas, 1998, 16(3): 11–14 (in Chinese with English abstract)



[4]赵秉强, 李凤超, 薛坚, 李增嘉. 不同耕法对冬小麦根系生长发育的影响. 作物学报, 1997, 23: 287–296



Zhao B Q, Li F C, Xue J, Li Z J. Effect of different tillage methods on root growth of winter wheat. Acta Agron Sin, 1997, 23: 287–296 (in Chinese with English abstract)



[5]褚鹏飞, 于振文, 王东, 张永丽, 石玉. 耕作方式对小麦开花后旗叶水势与叶绿素荧光参数日变化和水分利用效率的影响. 作物学报, 2012, 38: 1051–1061



Chu P F, Yu Z W, Wang D, Zhang Y L, Shi Y. Effect of tillage mode on diurnal variations of water potential and chlorophyll fluorescence characteristics of flag leaf after anthesis and water use efficiency in wheat. Acta Agron Sin, 2012, 38: 1051–1061 (in Chinese with English abstract)



[6]秦红灵, 高旺盛, 马月存, 马丽, 尹春梅. 两年免耕后深松对土壤水分的影响. 中国农业科学, 2008, 41: 78–85



Qin H L, Gao W S, Ma Y C, Ma L, Yin C M. Effects of subsoiling on soil moisture under no tillage 2 years later. Sci Agric Sin, 2008, 41: 78–85 (in Chinese with English abstract)



[7]白一茹, 邵明安. 黄土高原雨养区坡面土壤蓄水量时间稳定性. 农业工程学报, 2011, 27(7): 45–50



Bai Y R, Shao M A. Temporal stability of soil water storage on slope in rain fed region of Loess Plateau. Trans CSAE, 2011, 27(7): 45–50 (in Chinese with English abstract)



[8]刘爽, 武雪萍, 吴会军, 梁二, 蔡典雄. 休闲期不同耕作方式对洛阳冬小麦农田土壤水分的影响. 中国农业气象, 2007, 28: 292–295



Liu S, Wu X P, Wu H J, Liang E, Cai D X. Influence of different tillage practices during summer fallow on soil moisture in winter wheat field in Luoyang. Chin J Agrometeorol, 2007, 28: 292–295 (in Chinese with English abstract)



[9]Wang X B, Cai D X, Hoogmoed W B, Oenema O, Perdok U D. Developments in conservation tillage in rained regions of North China. Soil Tillage Res, 2007, 93: 239–250



[10]毛红玲, 李军, 贾志宽, 王蕾. 旱作麦田保护性耕作蓄水保墒和增产增收效应. 农业工程学报, 2010, 26(8): 44–51



Mao H L, Li J, Jia Z K, Wang L. Soil water conservation effect, yield and income increments of conservation tillage measures on dryland wheat field. Trans CSAE, 2010, 26(8): 44–51 (in Chinese with English abstract)



[11]张北赢, 徐学选, 刘文兆, 陈天林. 黄土丘陵沟壑区不同降水年型下土壤水分动态. 应用生态学报, 2008, 19: 1234–1240



Zhang B Y, Xu X X, Liu W Z, Chen T L. Dynamic changes of soil moisture in loess hilly and gully region under effects of different yearly precipitation patterns. Chin J Appl Ecol, 2008, 19: 1234–1240 (in Chinese with English abstract)



[12]侯贤清, 王维, 韩清芳, 贾志宽, 严波, 李永平, 苏秦. 夏闲期轮耕对小麦田土壤水分及产量的影响. 应用生态学报, 2001, 292: 2524–2533



Hou X Q, Wang W, Han Q F, Jia Z K, Yan B, Li Y P, Su Q. Effects of rotational tillage during summer fallow on wheat field soil water regime and grain yield. Chin J Appl Ecol, 2001, 292: 2524–2533 (in Chinese with English abstract)



[13]侯贤清, 韩清芳, 贾志宽, 李永平, 杨宝平. 半干旱区夏闲期不同耕作方式对土壤水分及小麦水分利用效率的影响. 干旱地区农业研究, 2009, 27(5): 52–58



Hou X Q, Han Q F, Jia Z K, Li Y P, Yang B P. Effects of different tillage practices in summer fallow period on soil water and crop water use efficiency in semi-arid areas. Agric Res Arid Areas, 2009, 27(5): 52–58 (in Chinese with English abstract)



[14]付增光, 杜世平, 廖允成. 渭北旱地小麦留茬深松膜侧沟播耕作技术体系研究. 干旱地区农业研究, 2003, 21(2): 13–17



Fu Z G, Du S P, Liao Y C. Studies on tillage system of stubble mulching and subsoiling and furrow sowing on side of film mulch for dryland winter wheat in Weibei Plateau. Agric Res Arid Areas, 2003, 21(2): 13-17 (in Chinese with English abstract)



[15]Baumhardt R L, Jones O R. Residue management and tillage effects on soil-water storage and grain yield of dryland wheat and sorghum for a clay loam in Texas. Soil & Till Res, 2002, 68: 71–82



[16]王红光, 于振文, 张永丽, 石玉, 王东. 耕作方式对旱地小麦耗水特性和干物质积累的影响. 作物学报, 2012, 38: 675–682



Wang H G, Yu Z W, Zhang Y L, Shi Y, Wang D. Effects of tillage regimes on water consumption and dry matter accumulation in dryland wheat. Acta Agron Sin, 2012, 38: 675–682 (in Chinese with English abstract)



[17]Lampurlanes J, Angas P, Cantero Martinez C. Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crops Res, 2001, 69: 27–40



[18]Fitter A H. Plant Root Growth: an Ecological Perspective. Oxford: Blackwell Scientific Publications, 1991. pp 229–243



[19]Pearson G J, Mann I G, Zhang Z. Changes in root growth within successive wheat crops in a cropping cycle using minimum and conventional tillage. Field Crops Res, 1991, 28: 117–133



[20]王永华, 王玉杰, 冯伟.两种气候年型下不同栽培模式对冬小麦根系时空分布及产量的影响. 中国农业科学, 2012, 45: 2826–2837



Wang Y H, Wang Y J, Feng W. Effects of different cultivation patterns on the spatial temporal distribution characteristics of roots and grain yield of winter wheat in two climatic years. Sci Agric Sin, 2012, 45: 2826–2837 (in Chinese with English abstract)



[21]肖继兵, 孙占祥, 杨久廷, 张玉龙, 郑家明, 刘洋.半干旱区中耕深松对土壤水分和作物产量的影响. 土壤通报, 2011, 42: 709–714



Xiao J B, Sun Z Y, Yang J T, Zhang Y L, Zheng J M, Liu Y. Effects of subsoiling on soil moisture and crop yield cultivation in semi arid region. Chin J Soil Sci, 2011, 42: 709–714 (in Chinese with English abstract)



[22]王法宏, 王旭清, 任德昌, 于振文, 余松烈. 土壤深松对小麦根系活性的垂直分布及旗叶衰老的影响. 核农学报, 2003, 17: 56–61



Wang F H, Wang X Q, Ren D C, Yu Z W, Yu S L. Effect of soil deep tillage on root activity and vertical distribution. Acta Agric Nucl Sin, 2003, 17: 56–61 (in Chinese with English abstract

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!