欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1470-1484.doi: 10.3724/SP.J.1006.2014.01470

• 耕作栽培·生理生化 • 上一篇    下一篇

低温胁迫对微胚乳超甜超高油玉米耐寒性生理生化特性的影响

郝小琴,姚鹏鹤,高峥荣,吴子恺   

  1. 广西大学农学院,广西南宁 530005
  • 收稿日期:2013-10-18 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 基金资助:

    本研究由广西自然科学基金项目(2012GXNSFAA053048)和南宁市科学研究与技术开发计划项目(20122064)资助。

Effects of Low Temperature Stress on the Physiological and Biochemical Characteristics of Cold Tolerance in Micro-endosperm Super Sweet and Super High Oil Maize

HAO Xiao-Qin,YAO Peng-He,GAO Zheng-Rong,WU Zi-Kai   

  1. Agricultural College of Guangxi University, Nanning 530005, China
  • Received:2013-10-18 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03

摘要:

为了解新型种质微胚乳超甜超高油玉米(简称为微胚乳玉米)的耐寒性,选用5个微胚乳玉米杂交组合(ME),以高油115和正甜68为对照,在发芽期和苗期低温胁迫下,测定发芽率、发芽势、相对电导率、丙二醛含量、脯氨酸含量、可溶性糖含量、可溶性蛋白含量、叶绿素含量以及SOD、POD活性等生理生化指标,鉴定其耐寒性,并利用模糊隶属函数法综合评定其耐寒性。结果表明,ME1、ME2、ME3和高油115在发芽期的相对电导率上升幅度较小,脯氨酸含量和SOD活性上升幅度较大;而ME5、ME4和正甜68在发芽期的相对电导率上升幅度较大,脯氨酸含量和SOD活性上升幅度较小。利用相对电导率、脯氨酸含量、SOD活性3个指标能较有效预测微胚乳玉米在发芽期的耐寒性。ME2、ME1和高油115在苗期的丙二醛含量上升幅度较小,脯氨酸含量、SOD和POD活性上升幅度较大;而ME5和正甜68在苗期的丙二醛含量上升幅度较大,脯氨酸含量、SOD和POD活性上升幅度较小。利用丙二醛含量、脯氨酸含量、SOD和POD活性4个指标能较好地预测微胚乳玉米在苗期的耐寒性。以隶属函数值综合评价表明,5个微胚乳玉米材料的耐寒性均强于正甜68。ME2在发芽期和苗期都表现较强的耐寒性,其次为ME1和 ME3,而ME4和ME5耐寒性均较弱。

关键词: 微胚乳超甜超高油玉米, 低温胁迫, 耐寒性, 生理生化特性

Abstract:

In the germination and seedling stages of the maize, five micro-endosperm super sweet and super high oil maize (abbreviation as ME) hybrid combinations, two control materials Gaoyou 115 and Zhengtian 68 were used to study the changes of physiological and biochemical characteristics, such as germination rate, germination energy, relative conductivity, contents of MDA, proline, soluble sugar, soluble protein, chlorophyll, and SOD, POD activities under low temperature stress. At the same time, the identification of cold tolerance of the materials were conducted. Based on the multiple physiological and biochemical parameters, we employed the fuzzy membership function to evaluate the cold tolerance of the experiment materials comprehensively. The results showed that the relative conductivity had a little increase, but the proline content and SOD activity increased largely in ME1, ME2, ME3, and Gaoyou 115, as compared with ME5, ME4 and Zhengtian68 in the germination stage. It was advised that relative conductivity, proline content and SOD activity could be used to predict cold tolerance of the materials more effectively in germination stage. In the seedling stage, compared with ME5 and Zhengtian 68, the MDA content increased a little and activities of SOD, POD and proline content increased largely in ME2, ME1, and Gaoyou 115. So we thought that MDA content, proline content, SOD and POD activities can be used to predict the cold tolerance of the experiment materials in seedling stage. Meanwhile, membership function value showed that the cold tolerance of the five ME materials was stronger than that of Zhengtian 68. Among the five ME materials, ME2 showed a strong ability to tolerate low temperature stress in germination and seedling stages, ME1 and ME3 showed moderate tolerance, and ME4 and ME5 showed weak tolerance.

Key words: Micro-endosperm super sweet and super high oil maize, Low temperature stress, Cold tolerance, Physiological and biochemical characteristics

[1]扈光辉. 玉米抗冷性研究进展. 黑龙江农业科学, 2009, (2): 150–152



Hu G H. Research advancement on chilling tolerance in maize. Heilongjiang Agric Sci, 2009, (2): 150–152 (in Chinese with English abstract)



[2]谭振波, 刘昕, 曹鸣庆. 玉米抗寒性的研究进展. 玉米科学, 2002, 10(2): 56–60



  Tan Z B, Liu X, Cao M Q. Recent advances on mechanisms of maize chilling tolerance. J Maize Sci, 2002, 10(2): 56–60 (in Chinese with English abstract)



[3]Lyons J M, Raison J K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol, 1970, 45: 386–389



[4]Lyons J M. Relationship between the physical nature of Mitochondrial membranes and chilling sensitivity in plants. Am Oil Chem Soc, 1973, 42: 1056–1058



[5]王华, 王飞, 陈登文, 丁勤. 低温胁迫对杏花SOD活性和膜脂过氧化的影响. 果树科学, 2000, 17(3): 197–201



   Wang H, Wang F, Chen D W, Ding Q. Effects of low temperature stress on SOD activity and membrane deroxidization of apricot flowers. J Fruit Sci, 2000, 17(3): 197–201 (in Chinese with English abstract)



[6]冯献宾, 董倩, 王洁, 庞曼, 路丙社. 低温胁迫对黄连木抗寒生理指标的影响. 中国农学通报, 2011, 27(8): 23–26



Feng X B, Dong Q, Wang J, Pang M, Lu B S. Effects of low temperature on cold resistance of Pistacia chinensis. Chin Agric Sci Bull, 2011, 27(8): 23–26 (in Chinese with English abstract)



[7]马凤鸣, 王瑞, 石振. 低温胁迫对玉米幼苗某些生理指标的影响. 作物杂志, 2007, (5): 41–45



Ma F M, Wang R, Shi Z. Effect of low temperature stress on some physiology parameter of maize seedling. Crops, 2007, (5): 41–45 (in Chinese)



[8]高素华. 玉米低温冷害机理研究综述. 气象科技, 1997, (4): 37–43



Gao S H. Summarize of research on mechanism of low temperature cold harm in maize. Sci Technol Meteorol, 1997, (4): 37–43 (in Chinese)



[9]杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响. 茶叶科学, 2004, 24(3): 177–182



Yang Y J, Zhen L Y, Wang X C. Effect of cold acclimation and ABA on cold hardiness contents of proline in tea plants. J Tea Sci, 2004, 24(3): 177–182 (in Chinese with English abstract)



[10]杨光, 刘宏魁, 李世鹏, 吴颖, 苏胜忠, 单晓辉, 原亚萍. 玉米抗冷种质资源的筛选与鉴定. 玉米科学, 2012, 20(1): 57–60



Yang G, Liu H K, Li S P, Wu Y, Su S Z, Shan X H, Yuan Y P. Screening and identification of chilling resistant germplasm resources in maize. J Maize Sci, 2012, 20(1): 57–60 (in Chinese with English abstract)



[11]王淑杰, 王连君, 王家民, 杨晓光, 马秀华. 果树抗寒生理研究进展. 北方园艺, 1998, (5): 28–29



Wang S J, Wang L J, Wang J M, Yang X G, Ma X H. Research advancement on physiology of cold resistance in fruit. Northern Hortic, 1998, (5): 28–29 (in Chinese)



[12]马尧, 杨国会, 王春兰, 田永清. 在干旱和低温胁迫下薏苡幼苗抗逆性研究. 农业与技术, 2000, 20(5): 41–42, 45



Ma Y, Yang G H, Wang C L, Tian Y Q. Research of jobstears seedling in adversity resistance on cold treatment and drought condition. Agric & Technol, 2000, 20(5): 41–42, 45 (in Chinese with English abstract)



[13]高志红, 章镇, 韩振海. 果梅种质枝条抗寒性鉴定. 果树学报, 2005, 22: 709–711



Gao Z H, Zhang Z, Han Z H. Identification of freezing resistance in Japanese apricot germplasm. J Fruit Sci, 2005, 22: 709–711 (in Chinese with English abstract)



[14]Levitt J. Responses of Plant to Environmental Stress. New York: Academic Press, 1980. pp 365–488



[15]Uemura S,Gilmour S J, Thomashow M F. Effects of COR 6.6 and COR 15am polypeptides Encoded by COR gene of Arabidopsis thaliana. Plant Physiol, 1996, 111: 313–327



[16]武兰芳. 低温下玉米幼苗叶片某些细胞器可溶性蛋白质的变化. 华北农学报, 1990, 5(2): 38–43



Wu L F. Changes of soluble protein in some organelles of maize seedling leaf at low temperature. Acta Agric Boreali-Sin, 1990, 5(2): 38–43 (in Chinese with English abstract)



[17]张敬贤, 李俊明, 崔四平, 魏建昆, 张海明, 耿庆汉. 低温对玉米幼苗细胞保护酶活性及胞质质量参数的影响. 华北农学报, 1993, 8(3): 9–12



Zhang J X, Li J M, Cui S P, Wei J K, Zhang H M, Geng Q H. The effect of low temperature on activities of cell protective enzymes and protoplasmic parameters in leaves of zea mays. Acta Agric Boreali-Sin, 1993, 8(3): 9–12 (in Chinese with English abstract)



[18]王金胜, 郭春绒, 张述义. 低温对不同抗冷性玉米幼苗H2O2及其清除酶类的影响. 山西农业大学学报, 1993, 13: 240–243



Wang J S, Guo C R, Zhang S Y. The effect of low temperature on H2O2 and its clearance enzymes in maize seeklings with different chilling resistance. J Shanxi Agric Univ, 1993, 13: 240–243 (in Chinese with English abstract)



[19]王兰, 蔡千蕙. 低温胁迫对水稻苗期SOD、POD活性的影响. 湖南农业科学, 2011, (11): 56–58



Wang L, Cai Q H. Impacts of cold stress on activities of SOD and POD of rice at seedling stage. Hunan Agric Sci, 2011, (11): 56–58 (in Chinese with English abstract)



[20]陈卫国, 刘勇, 周冀衡. 低温胁迫对烟草膜保护酶系统的影响. 安徽农业科学, 2011, 39: 3978–3980



Chen W G, Liu Y, Zhou J H. Influence of low temperature stress on the membrane protected enzyme system in tobacco. J Anhui Agric Sci, 2011, 39: 3978–3980 (in Chinese with English abstract)



[21]王晨光, 王希, 苍晶, 杨丽娟. 低温胁迫对水稻幼苗抗冷性的影响. 东北农业大学学报, 2004, 35(2): 129–134



Wang C G, Wang X, Cang J, Yang L J. Effect of low-temperature stress on cold-resistance ability of rice seedlings. J Northeast Agric Unive, 2004, 35(2): 129–134 (in Chinese with English abstract)



[22]朱祥春, 矫洪涛, 史芝文, 袁海峰. 低温胁迫对玉米幼苗抗冷性鉴定. 农业与技术, 2004, 24(1): 44–49



Zhu X C, Jiao H T, Shi Z W, Yuan H F. The low temperature is forced combating cooling quality of the appraisal to the corn seedling. Agric & Technol, 2004, 24(1): 44–49 (in Chinese with English abstract)



[23]杨静, 王华田, 宋承东, 张培法, 王迎. 持续低温胁迫对红叶石楠抗寒生理生化特性的影响. 江西农业大学学报, 2007, 29: 988–992



Yang J, Wang H T, Song C D, Zhang P F, Wang Y. Effect of durative low temperature on physiological and biochemical characteristics of photinia glabra var rubens. Acta Agric Univ Jiangxiensis, 2007, 29: 988–992 (in Chinese with English abstract)



[24]王宁, 吴军, 夏鹏云, 苏金乐. 低温胁迫对大叶冬青生理特性的影响. 河南农业大学学报, 2011, 45(4): 407–410



Wang N, Wu J, Xia P Y, Su J L. Effects of low temperature stress on physiological characteristics of ilex latifolia thunb. J Henan Agric Univ, 2011, 45(4): 407–410 (in Chinese with English abstract)



[25]吴子恺. 新型超高油玉米种质的选育. 作物学报, 2004, 30: 739–744



Wu Z K. Breeding for new germplasm of super-high oil in corn. Acta Agron Sin, 2004, 30: 739–744 (in Chinese with English abstract)



[26]张宪政. 作物生理研究方法. 北京: 农业出版社, 1992. pp144–216



   Zhang X Z. Study Method of Physiology in Crops. Beijing: Agriculture Press, 1992. pp 144–216 (in Chinese)



[27]许桂芳, 张朝阳, 向佐湘. 利用隶属函数法对4种珍珠菜属植物的抗寒性综合评价. 西北林学院学报, 2009, 24(3): 24–26



Xu G F, Zhang Z Y, Xiang Z X. Comprehensive evaluation of cold resistance on four lysimachia plants by subordinate function values analysis. J Northwest For Univ, 2009, 24(3): 24–26 (in Chinese with English abstract)



[28]孙清鹏, 许煌灿, 张方秋, 尹光天, 张玉福. 低温胁迫对大叶相思和马占相思某些生理特性的影响. 林业科学研究, 2002, 15(l): 34–40



Sun Q P, Xu H C, Zhang F Q, Yin G T, Zhang Y F. Effects of low temperature stress on some physiological changes of Acacia auriculaeformis and A. mangium. For Res, 2002, 15(l): 34–40 (in Chinese with English abstract)

[1] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[2] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[3] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[4] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[5] 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
[6] 王道平,徐江,牟永莹,闫文秀,赵梦洁,马博,李群,张丽娜,潘映红. 表油菜素内酯影响水稻幼苗响应低温胁迫的蛋白质组学分析[J]. 作物学报, 2018, 44(6): 897-908.
[7] 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467.
[8] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
[9] 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425.
[10] 杨慧菊,郭华春*. 低温胁迫下马铃薯的数字基因表达谱分析[J]. 作物学报, 2017, 43(03): 454-463.
[11] 李馨园,杨晔,张丽芳,左师宇,李丽杰,焦健,李晶. 外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节[J]. 作物学报, 2017, 43(01): 141-148.
[12] 刘自刚,袁金海,孙万仓,曾秀存,方彦,王志江,武军艳,方园,李学才,米超. 低温胁迫下白菜型冬油菜差异蛋白质组学及光合特性分析[J]. 作物学报, 2016, 42(10): 1541-1550.
[13] 冯勋伟,才宏伟. 结缕草CBF基因的同源克隆及其转基因拟南芥的抗寒性验证[J]. 作物学报, 2014, 40(09): 1572-1578.
[14] 孙富,杨丽涛,谢晓娜,刘光玲,李杨瑞. 低温胁迫对不同抗寒性甘蔗品种幼苗叶绿体生理代谢的影响[J]. 作物学报, 2012, 38(04): 732-739.
[15] 王艳,马纪*,黄薇,邱立明,叶锋,张富春. 叶绿体型转昆虫抗冻蛋白基因烟草的耐寒性[J]. 作物学报, 2009, 35(7): 1253-1360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!