欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1442-1447.doi: 10.3724/SP.J.1006.2018.01442

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定

王林生(),张雅莉,南广慧   

  1. 河南科技大学农学院/洛阳市作物遗传改良与种质创新重点实验室, 河南洛阳 471023
  • 收稿日期:2018-03-07 接受日期:2018-06-12 出版日期:2018-10-10 网络出版日期:2018-07-17
  • 通讯作者: 王林生
  • 基金资助:
    本研究由国家自然科学基金项目(31501301);河南省国际合作项目()和河南省教育厅自然科学研究项目(2011A180011)资助(172102410052);河南省教育厅自然科学研究项目(2011A180011)

Molecular and Cytogenetic Identification of Triticum aestivum-Leymus racemosus Translocation Line T5AS-7LrL·7LrS

Lin-Sheng WANG(),Ya-Li ZHANG,Guang-Hui NAN   

  1. Key Laboratory of Crop Genetic Improvement and Germplasm Innovation / College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
  • Received:2018-03-07 Accepted:2018-06-12 Published:2018-10-10 Published online:2018-07-17
  • Contact: Lin-Sheng WANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31501301);the International Cooperation Program of Henan Province(172102410052);the Natural Science Research Program of Henan Education Department(2011A180011)

摘要:

大赖草对赤霉病具有较好的抗性, 将大赖草赤霉病抗性基因转入普通小麦, 对拓宽小麦赤霉病抗性基础有重要意义。本研究在获得抗赤霉病普通小麦-大赖草异附加系基础上, 采用 60Co-γ射线(1200 Rad, 剂量率100 Rad min -1)处理小麦-大赖草二体附加系DA7Lr, 并用处理后的花粉授给去雄的普通小麦中国春, 对其M1代种子根尖细胞有丝分裂中期染色体进行GISH分析, 获得1株具有一条普通小麦-大赖草易位染色体的植株, 对其自交后代中具有2条易位染色体植株的花粉母细胞减数分裂中期I观察发现, 2条易位染色体形成了稳定的环状二价体, 表明该植株为纯合体。利用顺序GISH-双色FISH分析, 结合C-分带、小麦D组专化探针Oligo-pAs1-2和B组专化探针Oligo-pSc119.2-2, 进一步鉴定出该易位系为T5AS-7LrL·7LrS, 同时筛选出可追踪该易位系的3个EST-STS分子标记, 即BE591127、BQ168298和BE591737。该易位系的育成也为小麦赤霉病遗改良提供了新种质。

关键词: 普通小麦-大赖草易位系, 分子细胞遗传学, 赤霉病抗性, 60Co-γ射线

Abstract:

Leymus racemosus is highly resistant to wheat scab. The transfer of resistance genes from L. racemosus to common wheat (Triticum aestivum) is important for broadening the resistant sources against scab in common wheat. In this study, the pollen of DA7Lr, a T. aestivum-L. racemosus disomic addition line with scab resistance, was irradiated with 60Co-γ ray at 1200 Rad (100 Rad min -1) before pollinating to emasculated T. aestivum cv. Chinese Spring. One plant with one translocation chromosome was detected in the M1 generation by GISH. This plant was then self-pollinated and the pollen mother cells (PMCs) of the offspring plants with two translocation chromosomes were cytologically observed, and one ring bivalent was found at meiotic metaphase I, indicating that the plant with two translocation chromosomes was one translocation homozygote. The translocation line was proved to be T5AS-7LrL·7LrS by C-banding, and sequential GISH-FISH using Oligo-pAs1-2 and Oligo-pSc119.2-2 as probes. Three EST-STS markers (BE591127, BQ168298, and BE591737) were identified to be able to track the T5AS-7LrL·7LrS line. The translocation line also serves as an resistant source against wheat scab in wheat breeding programs.

Key words: Triticum aestivum-Leymus racemosus translocation line, molecular cytogenetics, scab resistance, 60Co-γ ray

表1

鉴定易位染色体的特异性引物"

引物名称
Primer name
序列 Sequence (5′-3′) EST染色体
EST chromosome
退火温度
Annealing temperature (°C)
正向 Froward 反向 Reverse
BE591127 GCAGCTCATCTTCATGGTCA CGTTGCAGCAATCAGTCCTA 7AS 7BS 7DS 60
BQ168298 GCTCTCGCTCATCATCAACA CTCGCAATGGTACCAAGGTT 7AS 7BS 7DS 60
BE591737 AGCAGCTAGGAGGGTGTCTG TAACCGCAGCTTTCTCATCC 7AS 7BS 7DS 60

图1

易位系T5AS-7LrL·7LrS荧光原位杂交(2n=44) 有丝分裂中期的顺次GISH-FISH, A图中绿色信号为Fluorescein-l2-dUTP标记的大赖草基因组DNA, B图中的红色信号为TARAM标记的Oligo-pSc119.2-2, 绿色信号为6-FAM标记的Oligo-pAs1-2, 箭头指示易位染色体。"

图2

易位染色体T5AS-7LrL·7LrS的C-分带及荧光原位杂交 从左至右依次为C-分带的5A、C-分带的T5AS-7LrL·7LrS、荧光原位杂交的T5AS-7LrL·7LrS、Oligo-pSc119.2-2 (红色)杂交的T5AS-7LrL·7LrS、Oligo-pSc119.2-2 (绿色)杂交的5A、荧光原位杂交的7Lr和C分带的7Lr。"

图3

易位系T5AS-7LrL·7LrS花粉母细胞减数分裂中期I染色体的荧光原位杂交 图中绿色信号为荧光素Fluorescein-l2-dUTP标记的大赖草基因组DNA, 箭头指示配对的二价体易位染色体T5AS-7LrL·7LrS。"

图4

引物BE591127、BQ168298和BE591737的PCR扩增结果 1: 中国春; 2: 大赖草; 3: DA7Lr; 4: T5AS-7LrL·7LrS。"

表1

不同材料赤霉病抗性(病小穗率)的田间鉴定"

材料
Material
大田鉴定 Identified in field
2015 2016 2017
中国春 Chinese Spring 35.27 39.58±7.96 30.90±8.92
T5AS-7LrL·7LrS 8.70 11.22±5.12** 9.67±7.51**
苏麦3号Sumai 3 3.90 6.35±3.12** 5.69±2.14**
绵阳85-45 Mianyang 85-45 49.23 56.32±11.26** 47.83±13.25**

图5

易位系T5AS-7LrL·7LrS的赤霉病抗性鉴定 A: T5AS-7LrL·7LrS; B: 中国春; C: 绵阳85-45; D: 苏麦3号。"

[1] McGuire P E, Dvorak J . High salt-tolerance potential in wheatgrasses. Crop Sci, 1981,21:702-705
doi: 10.2135/cropsci1981.0011183X002100050018x
[2] Mujeeb-Kazi A, Bekele G T, Mirand J L. Incorporation of alien genetic information from Elymus giganteus into Triticum aestivum. In: Proc the 6th Int Wheat Genet Symp, Kyoto, Japan, 1983. pp 223-231
[3] Mujeeb-Kazi A, Rodriguez R . An intergeneric hybrid of Triticum aestivum L. × Elymus giganteus. J Hered, 1981,72:253-256
[4] 陈佩度, 王兆悌, 王苏玲, 黄俐, 王裕中, 刘大钧 . 将大赖草种质转移给普通小麦的研究: III. 抗赤霉病异附加系选育. 遗传学报, 1995,22:206-210
Chen P D, Wang Z T, Wang S L, Huang L, Wang Y Z, Liu D J . Transfer of useful germplasm from Leymus racemosus Lam. to common wheat: III. Development of addition lines with wheat scab resistance. Acta Genet Sin, 1995,22:206-210 (in Chinese with English abstract)
[5] Qi L L, Wang S L, Chen P D . Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet, 1997,95:1084-1091
[6] 刘文轩, 陈佩度, 刘大钧 . 利用减数分裂期成株电离辐射选育小麦-大赖草易位系的研究. 植物学报, 1999,41:463-467
doi: 10.3321/j.issn:1672-9072.1999.05.003
Liu W X, Chen P D, Liu D J . Development of Triticum aestivum-Leymus racemosus translocation lines by irradiating adult plants at meiosis. Acta Bot Sin, 1999,41:463-467 (in Chinese with English abstract)
doi: 10.3321/j.issn:1672-9072.1999.05.003
[7] 刘文轩, 陈佩度, 刘大钧 . 利用花粉辐射诱发普通小麦与大赖草染色体易位的研究. 遗传学报, 2000,27:44-49
doi: 10.1007/BF02983442
Liu W X, Chen P D, Liu D J . Studies of the development of Triticum aestivum-Leymus racemosus translocation lines by pollen irradiation. Acta Genet Sin, 2000,27:44-49 (in Chinese with English abstract)
doi: 10.1007/BF02983442
[8] 刘文轩, 陈佩度, 刘大钧 . 一个普通小麦-大赖草易位系T01的选育与鉴定. 作物学报, 2000,26:305-309
doi: 10.3321/j.issn:0496-3490.2000.03.009
Liu W X, Chen P D, Liu D J . Selection, breeding and identification of T01: a Triticum aestivum-Leymus racemosus translocation line. Acta Agron Sin, 2000,26:305-309 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2000.03.009
[9] 杨宝军, 窦全文, 刘文轩, 周波, 陈佩度 . 普通小麦-大赖草易位系NAU601和NAU618的选育及双端二体测交分析. 遗传学报, 2002,29:350-354
Yang B J, Dou Q W, Liu W X, Zhou B, Chen P D . Development of Triticum aestivum-Leymus racemosus translocation lines NAU601 and NAU618 and their test-cross analysis with double ditelosomic. Acta Genet Sin, 2002,29:350-354 (in Chinese with English abstract)
[10] Yuan J H, Chen P D, Liu D J . Development of Triticum aestivum- Leymus racemosus translocation lines using gametocidal chromosomes. Sci China Ser C: Life Sci, 2003,46:522-530
[11] Wang L S, Chen P D, Wang X E . Molecular cytogenetic analysis of Triticum aestivum-Leymus racemosus reciprocal chromosomal translocation T7DS·5LrL/T5LrS·7DL. Chin Sci Bull, 2010,55:1026-1031
[12] 崔承齐, 王林生, 陈佩度 . 普通小麦-大赖草易位系T7BS·7Lr#1S和T2AS·2AL-7Lr#1S的分子细胞遗传学鉴定. 作物学报, 2013,39:191-197
Cui C Q, Wang L S, Chen P D . Molecular and cytogenetic identification of Triticum aestivum-Leymus racemosus translocation lines T7BS·7Lr#1S and T2AS·2AL-7Lr#1S. Acta Agron Sin, 2013,39:191-197 (in Chinese with English abstract)
[13] Wang L S, Chen P D . Development of Triticum aestivum-Leymus racemosus sub.7Lr#1S(7A) with resistance to wheat scab and their analysis with meiosis. Chin Sci Bull, 2008,53:3522-3529
[14] Qi L L, Pumphrey M O, Friebe B, Gill B S . Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008,117:1155-1166 (in Chinese with English abstract)
[15] Gill B S, Friebe B . Standard karyotype and system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 1991,34:830-839
[16] Mukai Y, Nakahara Y, Yamamoto M . Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993,36:489-494
[17] Zhang P, Li W L, Friebe B, Gill B S . Simultaneous painting of three genomes in hexaploid wheat by BACK-FISH. Genome, 2004,47:979-878
doi: 10.1139/g04-042 pmid: 15499412
[18] Pedersen C, Linde-Laursen I . Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromos Res, 1994,2:65-71
doi: 10.1007/BF01539456 pmid: 8162323
[19] Tang Z X, Yang Z J, Fu S L . Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet, 2014,55:313-318
doi: 10.1007/s13353-014-0215-z
[20] Sharp P J, Cao S, Desai S, Gale M D . The isolation characterization and application in the Triticae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet, 1989,78:342-348
[21] 王裕中, 杨新宁, 尚庆璞 . 小麦赤霉病抗性鉴定技术的改进及其抗源的开拓. 中国农业科学, 1982,23(5):66-67
Wang Y Z, Yang X N, Shang Q P . The improvement of identification technique of scab (Gibberella zeae Petch.) resistance of wheat and the development of resistant sources. Sci Agric Sin, 1982,23(5):66-67 (in Chinese with English abstract)
[22] Sears E R . The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol, 1956,9:1-22
[23] Sharma D, Knott D R . The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Genome, 1966,8:137-143
[24] Sears E, Gustafson J . Use of radiation to transfer alien chromosome segments to wheat. Crop Sci, 1993,33:897-901
doi: 10.2135/cropsci1993.0011183X003300050004x
[25] Friebe B, Jiang J M, Raupp W J, McIntosh R A, Gill B S . Characterization of wheat-alien translocations conferring resistance to diseases and pets: current status. Euphytica, 1996,91:59-87
doi: 10.1007/BF00035277
[26] Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X, Li L . Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta, 2010,232:501-510
[27] Zhang J, Liu W, Wu X, Yang X, Li X, Lu Y, Li L . An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta, 2016,244:853-864
[28] Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L . Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet, 2016,129:1023-1034
[29] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J . Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6A: I. Translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995,91:1125-1128
[30] 李桂萍, 陈佩度, 张守忠, 赵和 . 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源报, 2011,12:744-749
Li G P, Chen P D, Zhang S Z, Zhao H . Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour, 2011,12:744-749 (in Chinese with English abstract)
[31] Subbarao G V, Ban T, Masahiro K, Osamu I, Samejima H, Wang H Y, Pearse S J, Gopalakrishnan S, Nakahara K, Zakir Hossain A K M, Tsujimoto H, Berry W L . Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus(Triticeae) combat nitrification in wheat farming? Plant & Soil, 2007,299:55-64
[32] Subbarao G V, Sahrawat K L, Nakahara K, Rao I M, Ishitani M, Hash C T, Kishii M, Bonnett D G, Berry W L, Lata J C . A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot, 2013,112:297-316
doi: 10.1093/aob/mcs230
[1] 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29.
[2] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性[J]. 作物学报, 2018, 44(04): 505-511.
[3] 崔承齐,王林生,陈佩度. 普通小麦–大赖草易位系T7BS•7Lr#1S和T2AS•2AL-7Lr#1S的分子细胞遗传学鉴定[J]. 作物学报, 2013, 39(02): 191-197.
[4] 李祥义;吴兆苏. 小麦盛花期穗胆碱浓度与赤霉病抗性的关系研究初报[J]. 作物学报, 1994, 20(02): 176-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!