欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1448-1458.doi: 10.3724/SP.J.1006.2018.01448

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同地理来源MGIII组大豆品种生育期结构分析及E基因型鉴定

江红1,2,孙石2,宋雯雯2,吴存祥2,武婷婷2,胡水秀1,*(),韩天富2,*()   

  1. 1 江西农业大学农学院 / 江西省教育部作物生理生态与遗传育种重点实验室, 江西南昌 330000
    2中国农业科学院作物科学研究所 / 农业部北京大豆生物学重点实验室, 北京 100081
  • 收稿日期:2018-02-14 接受日期:2018-06-12 出版日期:2018-10-10 网络出版日期:2018-07-02
  • 通讯作者: 胡水秀,韩天富
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0101400);国家现代农业产业技术体系建设专项(CARS-04);中国农业科学院农业科技创新工程资助

Characterization of Growth Period Structure and Identification of E Genes of MGIII Soybean Varieties from Different Geographic Regions

Hong JIANG1,2,Shi SUN2,Wen-Wen SONG2,Cun-Xiang WU2,Ting-Ting WU2,Shui-Xiu HU1,*(),Tian-Fu HAN2,*()   

  1. 1 College of Agriculture, Jiangxi Agricultural University, Nanchang 330000, Jiangxi, China
    2 MOA Key Laboratory of Soybean Biology (Beijing) / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-02-14 Accepted:2018-06-12 Published:2018-10-10 Published online:2018-07-02
  • Contact: Shui-Xiu HU,Tian-Fu HAN
  • Supported by:
    This study was supported by the National Key R&D Program of China(2017YFD0101400);the China Agriculture Research System(CARS-04);the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences

摘要:

于2014?2015年对60份不同地理来源、生育期组为MGIII的大豆品种进行生育期结构分析和E基因型鉴定表明, 不同地理来源的MGIII大豆品种生育期相近, 但生育期结构差异较大。来自中国北方和美国的MGIII组春大豆品种营养生长期(V期)较短(开花较早), 生殖生长期(R期)较长, R期与V期的比值(R/V)较高; 黄淮海品种和南方MGIII组品种V期较长(开花较晚), R期较短, R期与V期的比值(R/V)较低。北方春大豆MGIII组品种的开花期受播期影响较其他地区同生育期组品种更为明显。中国MGIII组大豆品种存在6种E基因型, 其中E1e2E3E4e1-asE2E3E4分布区域广, 覆盖播季类型多, 而在8个美国MGIII组品种中只鉴定出1种E基因型(e1-asE2E3E4), 表明中国大豆品种在生育期结构性状上存在更为丰富的遗传变异。通过比较不同播期下MGIII大豆品种E基因在生育期性状上的平均效应值发现, 含显性位点越多的材料, 其V期越长, R期越短, R/V值越小。反之亦然。不同E基因对开花、成熟期的增强效果不尽相同, 且春播时各显性基因的效应值均比夏播时大。不同地理来源MGIII组大豆品种农艺性状存在明显差异, 且与生育期结构存在显著相关性。中国北方春大豆品种底荚高度与R/V值负相关, 但单株荚数与R/V值正相关; 黄淮海大豆品种的分枝数、单株荚数、百粒重与R/V间无显著相关性; 南方大豆品种分枝数与V期呈显著负相关。试验结果可为大豆品种生育期结构的改良及适应不同环境的品种选育提供依据。

关键词: 大豆, MGIII, 地理来源, 开花期, E基因, 农艺性状

Abstract:

In 2014 and 2015, 60 Maturity Group (MG) III soybean varieties from different geographic regions were chosen to characterize the maturity-related traits and to identify the alleles of the maturity genes (E alleles) in these varieties. The MGIII soybean varieties shared the similar growth period but owned different growth period structure. The spring-sowing MGIII soybean varieties from Northern China and the US bloomed earlier (shorter VP) and exhibited lower R/V values than those from Yellow-Huai-Hai River Valley (YHH) and South China. Six combinations of E alleles were identified in the tested Chinese varieties, among them E1e2E3E4 and e1-asE2E3E4 were found to distribute in larger areas of different regions and cover more ecotypes than other four combinations. In contrast, the type of e1-asE2E3E4 was the only E allele combination in the eight US standard varieties, indicating that the Chinese MGIII varieties were more abundant in genetic variations for the maturity-related traits. By comparing the average effect of each E allele on the maturity-related traits in MGIII soybean varieties under different sowing dates, it was found that the varieties with more dominant E alleles showed longer VP, shorter RP and smaller R/V value. The effects of different E alleles on flowering time and maturity were different, and the effect of the dominant E alleles on spring- sowing soybeans was stronger than that on the summer-sowing ones. The agronomic traits for MGIII varieties from different regions were significantly different and that correlated with the growth period structure. The height of bottom pods of MGIII soybean varieties from Northern China was negatively correlated with R/V, while the number of pods per plant was positively correlated with R/V. Branch number, pod number per plant and 100-seed weight of YHH MGIII varieties were not correlated with R/V. The branch number of southern soybean varieties was significant negative correlated with the VP. These results provide a basis for the improvement of the growth period structure of soybean varieties and adaptability of soybeans to multiple environments.

Key words: soybean, MGIII, geographical origin, E gene, agronomic traits

表1

用于鉴定E1、E2、E3和E4基因型的引物"

基因座
Locus
等位基因
Allele
引物序列
Primer sequence (5°-3°)
参考文献
Reference
E1 e1-nl/e1-as/e1-fs F: CACTCAAATTAAGCCCTTTCA; R: TCCGATCTCATCACCTTTCC [20], [31]
E2 e2 F: ACAGCCTCCCGTGCTG; R: TCCCATGAGTTGCGGAATGG
E3 e3-ns F: GTCTTTTGTCCTTGTCATTTGTGT; R: CAAAGCATCATCCAATACCCTCC
e3-fs F: GGGATAGTTCTGATGCTGTTCAA; R: CCTTGTATCGATAGCATATGTGCT [31]
E3-Mi F: TGGGTCTTCAGTTCAGTTGG; R: TGCTTCCTTTCACTTTCTGATG [31]
E3-Ha F: TGGAGGGTATTGGATGATGC; R: CGGTCAAGAGCCAACATGAG
e3-tr F: TGGAGGGTATTGGATGATGC; R: GTCCTATACAATTCTTTACGACG
E4 e4-oto/e4-tsu/e4-kam/e4-kes F: AGACGTAGTGCTAGGGCTAT; R: GCATCTCGCATCACCAGATCA [23]
e4-SORE--1 F: GCATCTCGCATCACCAGATCA; R: GCTCATCCCTTCGAATTCAG [32]

表2

不同地理来源MGIII大豆品种在北京春播和夏播条件下的生育期性状表现"

地理来源
Region
品种
Variety
播季类型 Sowing type 春播 Spring-sowing 夏播Summer-sowing
VE-R7 VE-R1 R1-R7 R/V VE-R7 VE-R1 R1-R7 R/V
中国北方
North China
吉38 Ji 38 Sp 98.8±3.9 23.9±2.0 75.0±2.6 3.2±0.2 95.0±3.4 25.9±2.6 69.4±4.4 2.7±0.4
吉82 Ji 82 Sp 99.5±9.2 25.3±2.1 75.2±7.4 3.1±0.1 104.1±0.4 30.2±2.3 75.1±1.7 2.6±0.2
吉91 Ji 91 Sp 101.8±3.0 21.5±1.7 80.2±4.7 3.8±0.5 90.8±1.2 24.6±1.2 66.2±2.3 2.7±0.2
吉农11 Jinong 11 Sp 97.1±1.5 20.9±0.2 76.3±1.8 3.7±0.1 87.9±3.1 26.3±2.2 61.6±4.9 2.4±0.4
九农24 Jiunong 24 Sp 94.8±2.9 20.8±1.5 74.0±1.6 3.6±0.2 91.0±1.7 24.6±1.1 66.8±1.8 2.8±0.1
长农8号 Changnong 8 Sp 106.6±7.2 21.9±1.6 84.8±7.5 3.9±0.5 91.7±4.3 26.4±0.8 65.3±3.5 2.5±0.1
蒙豆24 Mengdou 24 Sp 95.7±3.9 20.6±2.0 75.1±2.1 3.7±0.3 95.0±3.6 25.5±1.1 69.4±4.7 2.7±0.3
抚97-16 Fu 97-16 Sp 99.0±3.6 22.7±0.6 76.3±4.1 3.4±0.3 89.3±2.5 25.2±1.8 64.1±2.3 2.6±0.2
通农12 Tongnong 12 Sp 100.4±3.1 28.3±2.9 72.1±2.4 2.6±0.3 89.7±2.8 35.3±0.7 54.3±2.7 1.5±0.1
铁丰31 Tiefeng 31 Sp 102.8±5.6 22.9±2.8 79.9±3.0 3.5±0.4 104.4±2.8 25.2±0.4 79.3±2.5 3.1±0.1
铁丰33 Tiefeng 33 Sp 94.8±9.0 21.5±1.6 73.3±7.5 3.4±0.1 92.5±0.8 25.6±0.5 66.9±1.2 2.6±0.1
中黄30 Zhonghuang 30 Sp 102.0±6.1 24.2±1.2 77.8±5.8 3.2±0.3 92.4±2.3 30.0±0.3 62.4±2.1 2.1±0.1
中黄35 Zhonghuang 35 Sp 112.5±9.2 54.5±1.3 58.1±10.5 1.1±0.2 92.3±1.5 51.3±0.7 40.9±1.0 0.8±0.0
辽豆15 Liaodou 15 Sp 111.6±1.1 41.9±5.9 69.7±6.6 1.7±0.4 98.4±2.3 39.1±0.7 59.3±1.5 1.5±0.0
辽豆31 Liaodou 31 Sp 112.0±5.5 39.9±3.0 72.1±3.1 1.8±0.1 101.7±2.2 39.4±0.7 62.3±2.6 1.6±0.1
晋豆19 Jindou 19 Sp 102.6±2.7 22.4±0.7 80.2±3.2 3.6±0.3 91.3±2.0 29.7±0.8 61.6±1.5 2.1±0.1
平均值 Mean 102.0±5.9 b 27.1±9.7 b 75.0±5.9 ab 3.1±0.8 a 94.2±5.2 b 30.3±7.5 b 64.1±8.6 a 2.3±0.6 a
中国黄淮海
Yellow-Huai- Hai River Valley of China
诱变30 Youbian 30 Su 114.7±4.4 47.7±4.6 67.0±2.1 1.4±0.1 108.4±1.9 52.3±0.7 56.1±2.5 1.1±0.1
中黄37 Zhonghuang 37 Su 114.6±0.9 40.7±0.5 74.0±1.0 1.8±0.1 105.1±0.6 40.2±0.6 64.9±1.0 1.6±0.0
中黄39 Zhonghuang 39 Su 111.1±3.9 43.9±1.4 67.3±3.4 1.5±0.1 104.3±0.6 43.3±0.6 61.1±0.3 1.4±0.0
中黄13 Zhonghuang 13 Su 108.0±1.7 41.3±1.5 66.8±3.1 1.6±0.1 99.7±0.1 42.5±0.4 57.2±0.6 1.3±0.0
沧豆6号 Cangdou 6 Su 110.6±2.0 30.7±2.2 79.8±2.4 2.6±0.2 91.1±2.6 37.3±0.7 54.0±2.4 1.5±0.1
冀豆12 Jidou 12 Su 109.5±6.2 29.7±2.7 79.9±3.6 2.7±0.1 98.3±2.8 37.9±0.3 60.4±2.9 1.6±0.1
邯豆5号 Handou 5 Su 106.6±9.6 24.2±4.1 82.4±9.2 3.5±0.8 96.7±3.4 29.2±1.3 67.5±4.3 2.3±0.2
丰收黄 Fengshouhuang Su 110.0±4.5 28.7±1.4 81.3±2.3 2.8±0.2 99.5±2.7 35.1±1.0 64.2±3.3 1.8±0.1
鲁豆4号 Ludou 10 Su 99.1±2.4 34.3±1.8 64.8±3.9 1.9±0.2 89.6±1.1 34.8±1.4 54.8±1.6 1.6±0.1
临豆10号 Lindou 10 Su 108.7±7.0 34.3±5.6 74.4±1.6 2.2±0.3 104.0±1.3 41.3±0.7 62.7±1.1 1.5±0.0
齐黄34 Qihuang 34 Su 108.4±2.3 38.5±3.6 70.0±2.1 1.8±0.2 104.3±0.8 42.0±1.0 62.3±0.3 1.5±0.0
齐黄35 Qihuang 35 Su 106.3±3.3 38.1±3.1 68.1±0.3 1.8±0.1 103.0±0.7 38.8±1.1 64.2±1.7 1.7±0.1
山宁11 Shanning 11 Su 107.5±7.2 41.0±1.2 66.5±7.7 1.6±0.2 101.3±1.1 39.4±0.4 61.9±0.9 1.6±0.0
山宁14 Shanning 14 Su 105.5±3.1 32.6±6.4 72.9±8.2 2.3±0.8 100.1±2.8 36.4±2.4 63.8±4.6 1.8±0.2
山宁12 Shanning 12 Su 110.5±7.8 37.9±3.5 72.6±4.6 1.9±0.1 97.1±2.0 40.3±0.7 57.1±2.0 1.4±0.0
冀豆17 Jidou 17 Su 104.7±0.8 30.3±0.8 74.4±0.4 2.5±0.1 95.5±3.0 33.3±0.7 62.4±2.7 1.9±0.1
菏豆19 Hedou 19 Su 107.1±9.7 33.2±4.0 73.9±5.7 2.2±0.1 102.7±0.8 38.6±1.0 64.0±1.8 1.7±0.1
菏豆12 Hedou 12 Su 112.6±0.3 43.9±3.4 68.8±3.2 1.6±0.2 106.5±2.1 45.3±0.7 61.4±2.0 1.4±0.0
菏豆13 Hedou 13 Su 108.0±3.6 39.1±1.7 68.9±1.9 1.8±0.0 96.1±1.9 43.3±0.7 53.0±1.6 1.2±0.0
徐豆18 Xudou 18 Su 113.5±2.8 33.9±3.9 79.6±2.1 2.4±0.3 106.0±1.0 41.3±0.7 64.7±0.5 1.6±0.0
淮豆9号 Huaidou 9 Su 114.1±2.4 45.1±2.9 69.0±6.5 1.5±0.3 106.4±1.8 42.9±0.1 63.4±1.9 1.5±0.0
徐豆14 Xudou 14 Su 115.3±3.4 34.5±4.3 80.8±3.9 2.4±0.4 103.2±1.0 39.1±1.0 63.6±0.1 1.6±0.0
徐豆15 Xudou 15 Su 112.7±4.1 33.7±3.2 79.0±3.3 2.4±0.2 85.3±1.1 27.2±2.8 57.8±2.7 2.1±0.3
徐豆9号 Xudou 9 Su 108.4±4.0 32.0±3.9 76.4±4.1 2.4±0.4 103.6±2.1 40.3±0.7 63.3±2.1 1.6±0.1
皖宿2156 Wansu 2156 Su 111.4±4.9 42.4±1.0 69±4.6 1.6±0.1 99.9±3.4 42.4±0.9 57.5±3.8 1.4±0.1
皖宿5717 Wansu 5717 Su 106.9±1.0 32.1±0.3 74.8±0.7 2.3±0.1 102.3±2.4 36.7±1.1 65.6±3.4 1.8±0.1
平均值 Mean 109.5±3.7 a 36.3±5.8 a 73.2±5.4 bc 2.1±0.5 b 100.4±5.5 a 39.3±5.0 a 61.1±3.9 a 1.6±0.3 b
地理来源
Region
品种
Variety
播季类型 Sowing type 春播 Spring-sowing 夏播Summer-sowing
VE-R7 VE-R1 R1-R7 R/V VE-R7 VE-R1 R1-R7 R/V
中国南方
South China
浙H0634 Zhe H0634 Sp** 96.4±2.4 21.7±0.3 74.7±2.2 3.4±0.1 89.9±1.7 26.3±0.7 63.6±1.7 2.4±0.1
中豆39 Zhongdou 39 Sp** 115.1±0.1 43.0±2.1 70.7±0.1 1.6±0.1 100.5±1.8 43.0±1.8 57.5±0.5 1.3±0.1
川豆15 Chuandou 15 Sp** 113.9±6.0 45.2±3.3 68.7±9.1 1.5±0.3 108.0±2.8 46.6±1.1 62.0±2.8 1.3±0.1
贡豆22 Gongdou 22 Sp** 105.1±3.5 35.8±1.8 69.3±4.3 1.9±0.2 91.4±0.3 40.8±1.7 50.5±2.1 1.2±0.1
贡豆21 Gongdou 21 Sp** 112.7±4.2 43.1±3.0 69.6±6.3 1.6±0.2 100.3±0.8 42.3±0.7 58.3±0.8 1.4±0.0
南豆21 Nandou 21 Sp** 98.9±5.7 39.4±2.2 59.5±6.9 1.5±0.2 100.5±1.0 43.3±0.7 57.5±1.0 1.3±0.0
福豆310 Fudou 310 Sp** 113.5±3.6 44.7±1.6 68.7±2.7 1.5±0.1 92.7±3.1 42.7±0.8 50.0±3.9 1.2±0.1
黔豆3号 Qiandou 3 Sp** 109.6±2.5 37.5±1.4 72.2±3.0 1.9±0.1 90.7±0.5 41.2±0.4 49.4±0.7 1.2±0.0
黔豆5号 Qiandou 5 Sp** 101.0±3.6 36.5±1.3 64.5±2.6 1.8±0.1 87.2±1.9 39.6±1.2 47.6±1.5 1.2±0.1
黔豆1号 Qiandou 1 Sp** 111.5±0.7 36.7±2.9 74.1±4.4 2.0±0.3 91.5±9.9 39.2±0.4 52.3±10.1 1.3±0.3
平均值 Mean 107.8±6.9 a 38.4±6.9 a 69.2±4.5 c 1.9±0.6 b 95.3±6.6 b 40.5±5.4 a 54.9±5.6 b 1.4±0.4 b
北美
North America
Athow Sp 101.3±2.7 26.2±0.3 75.3±3.5 2.9±0.1
Dilworth Sp 104.6±2.0 25.5±0.7 80.2±0.3 3.2±0.1
Iroquois Sp 98.2±4.2 22.7±0.4 77.3±3.5 3.4±0.1
Kottman Sp 102.9±2.5 23.4±0.3 81.0±0.1 3.5±0.1
Macon Sp 106.3±1.1 25.1±0.1 81.6±1.1 3.3±0.1
Will Sp 101.1±2.7 26.7±0.7 75.7±3.0 2.8±0.2
Williams 82 Sp 105.2±5.2 27.4±0.6 80.8±0.2 3.0±0.1
Zane Sp 104.5±2.3 26.1±1.8 79.5±0.1 3.1±0.2
平均值 Mean 103.0±2.8 b 25.4±1.6 b 78.9±2.5 a 3.1±0.2 a

表3

不同播季类型MGIII大豆在北京春播和夏播条件下的生育期结构性状表现"

播季类型
Sowing type
春播 Spring-sowing 夏播 Summer-sowing
VE-R7 VE-R1 R1-R7 R/V VE-R7 VE-R1 R1-R7 R/V
北方春大豆(Sp) 102.3±5.0 b 26.5±8.0 b 76.3±5.3 a 3.1±0.7 a 94.2±5.2 b 30.3±7.5 b 64.1±8.6 a 2.3±0.6 a
黄淮海夏大豆(Su) 109.5±3.7 a 36.3±5.8 a 73.2±5.4 a 2.1±0.5 b 100.4±5.5 a 39.3±5.0 a 61.1±3.9 ab 1.6±0.3 b
南方春大豆(Sp**) 107.8±6.9 a 38.4±6.9 a 69.2±4.5b 1.9±0.6 b 95.3±6.6 b 40.5±5.4 a 54.9±5.6 b 1.4±0.4 b
平均值 Mean 106.2±5.9 32.7±8.6 73.7±5.7 2.5±0.8 97.5±6.3 36.7±7.3 60.8±6.7 1.8±0.5

表4

MGIII大豆品种的E基因型分类和区域分布情况"

基因型
Genotype
品种所属地区 Region
美国
USA
中国北方
North China
中国黄淮海
Yellow-Huai-Hai River Valley of China
中国南方
South China
E1E2E3E4 菏豆12 Hedou 12 黔豆3号 Qiandou 3
e1-asE2E3E4 Athow, Zane,
Dilworth, Iroquois, Williams 82, Kottman, Macon, Will
蒙豆24, 铁丰31, 铁丰33,
中黄30
Mengdou 24, Tiefeng 31, Tiefeng 33, Zhonghuang 30
冀豆17 Jidou 17
e1-ase2E3E4 邯豆5号 Handou 5
E1e2E3E4 吉38, 吉82, 吉91, 吉农11, 九农24, 长农8号, 抚97-16, 通农12, 中黄35, 辽豆15,
辽豆31, 晋豆19
Ji 38, Ji 82, Ji 91, Jinong 11, Jiunong 24, Changnong 8, Fu 97-16, Tongnong 12, Zhonghuang 35, Liaodou 15, Liaodou 31, Jindou 19
诱变30, 中黄37, 中黄39, 中黄13, 沧豆6号, 冀豆12, 鲁豆4号, 临豆10号, 齐黄34, 齐黄35, 山宁11, 山宁14, 山宁12, 菏豆19 Hedou 19, 菏豆13, 徐豆18, 淮豆9号, 徐豆14, 徐豆15, 徐豆9号, 皖宿2156, 皖宿5717
Youbian 30, Zhonghuang 37, Zhonghuang 39, Zhonghuang 13, Cangdou 6, Jidou 12, Ludou 4, Lindou 10, Qihuang 34, Qihuang 35, Shanning 11, Shanning 14, Shanning 12, Hedou 19, Hedou 13, Xudou 18, Huaidou 9, Xudou 14, Xudou 15, Xudou 9, Wansu 2156, Wansu 5717
中豆39, 川豆15,
贡豆21, 南豆21,
福豆310, 黔豆1号,
黔豆5号
Zhongdou 39, Chuandou 15,
Gongdou 21,
Nandou 21,
Fudou 310,
Qiandou 1,
Qiandou 5
E1e2e3-trE4 丰收黄 Fengshouhuang 贡豆22 Gongdou 22
e1-ase2e3-trE4 浙H0634 Zhe H0634

图1

春播和夏播时不同播季类型大豆品种在北京的生育期 性状 SpV: 春播时营养生长期; SpR: 春播时生殖生长期; SuV: 夏播时营养生长期; SuR: 夏播时生殖生长期; Sp: 北方春播类型; Sp** 南方春播类型; Su: 黄淮海夏播类型。"

图2

春播和夏播时不同生态类型大豆品种的R/V值 Sp: 北方春播类型; Sp** 南方春播类型; Su: 黄淮海夏播类型。"

表 5

不同E基因型的MGIII大豆品种在北京春播和夏播条件下的生育期性状表现"

基因型
Genotype
春播 Spring-sowing 夏播 Summer-sowing
VE-R7 VE-R1 R1-R7 R/V VE-R7 VE-R1 R1-R7 R/V
e1-ase2e3-trE4 96.4±3.8 c 21.7±1.2 c 74.7±2.9 b 3.4±0.3 a 89.9±4.0 a 26.3±7.0 c 63.6±2.1 ab 2.4±0.2 a
e1-ase2E3E4 106.6±6.9 ab 24.2±3.5 bc 82.4±3.6 a 3.5±0.4 a 96.7±3.7 a 29.2±2.4 bc 67.5±1.3 a 2.3±0.2 a
e1-asE2E3E4 100.0±4.4 bc 23.9±3.8 bc 76.1±2.7 ab 3.3±0.5 a 96.0±4.9 a 27.9±3.6 c 68.1±6.9 a 2.5±0.5 a
E1e2e3-trE4 107.5±3.4 a 32.2±5.0 ab 75.3±8.5 b 2.4±0.6 b 95.5±5.7 a 38.0±4.0 ab 57.3±9.7 b 1.5±0.4 b
E1e2E3E4 107.7±5.7 a 35.5±8.2 a 72.2±5.8 b 2.2±0.7 b 98.0±6.4 a 38.0±6.9 ab 60.1±6.1 ab 1.7±0.5 b
E1E2E3E4 111.1±2.1 a 40.7±4.5 a 70.5±2.4 b 1.8±0.2 b 98.6±11.2 a 43.3±2.9 a 55.4±8.5 b 1.3±0.1 b

表6

不同播期下E基因对MGIII大豆品种生育期结构相关性状的效应"

基因
Gene
背景基因型
Background genotype
春播 Spring-sowing 夏播 Summer-sowing
VE-R7(d) VE-R1 (d) R1-R7 (d) R/V VE-R7 (d) VE-R1 (d) R1-R7 (d) R/V
E1 E2E3E4 11.3 13.8 -5.6 -1.5 2.6 15.3 -12.7 -1.2
e2E3E4 1.7 15.0 -10.1 -1.3 1.3 8.7 -7.4 -0.6
e2e3-trE4 11.5 10.5 0.7 -1.0 5.6 11.7 -6.3 -0.9
平均值 Mean 8.2 12.8 -5.0 -1.3 3.1 11.9 -8.8 -0.9
E2 e1-asE3E4 -5.8 -0.3 -6.3 -0.2 -0.7 -1.2 0.6 0.2
E1E3E4 3.8 5.3 -1.9 -0.5 0.6 5.4 -4.7 -0.4
平均值 Mean -1.0 2.5 -4.1 -0.4 0.0 2.1 -2.1 -0.1
E3 E1e2E4 0.2 3.1 -3.0 -0.2 2.5 -0.1 2.8 0.1
e1-ase2E4 10.0 2.4 7.8 0.1 6.8 2.9 3.9 -0.1
平均值 Mean 5.1 2.8 2.4 -0.1 4.6 1.4 3.4 0.0

图3

夏播条件下不同来源MGIII大豆品种农艺性状的比较 PH: 株高; BPH: 底荚高度; NM: 主茎节数; BM: 分枝数; PP: 单株荚数; SW: 百粒重。"

表7

不同地理来源MGIII组大豆品种生育期结构与其他农艺性状间的相关系数"

来源地区
Region
性状
Trait
株高
PH (cm)
底荚高度
BPH (cm)
主茎节数
NM
分枝数
BM
单株荚数
PP
秕荚数
BP
百粒重
SW (g)
北方
Northern China
VE-R1 -0.244 0.937** 0.185 -0.370 -0.847** -0.819** 0.451
R1-R7 -0.303 -0.674* -0.412 0.527 0.688* 0.681* -0.783*
R/V 0.006 -0.902** -0.333 0.494 0.870** 0.870** -0.647
黄淮海
Yellow-Huai-
Hai River Valley
VE-R1 -0.210 0.242 0.204 -0.014 0.077 -0.013 0.416
R1-R7 0.175 -0.148 -0.088 -0.059 -0.232 0.313 0.306
R/V 0.250 -0.220 -0.152 -0.036 -0.189 0.100 -0.148
南方
South China
VE-R1 0.577 -0.166 0.687 -0.836* -0.008 0.264 0.672
R1-R7 0.377 0.113 0.457 -0.783 -0.173 -0.198 0.587
R/V 0.069 0.251 0.083 -0.350 -0.207 -0.381 0.214
全国平均
Average in
China
VE-R1 -0.118 0.738** 0.268 0.351 0.110 0.337 -0.118
R1-R7 0.306 -0.597** 0.078 -0.597** -0.013 0.228 0.306
R/V 0.164 -0.765** -0.196 -0.439* -0.079 -0.194 0.164
[1] Fehr W R, Caviness C E. Stages of Soybean Development. In: Special Report 80. Ames: Cooperative Extension Service, Agriculture and Home Economic Experiment Station, Iowa State University, 1977. pp 1-11
[2] 孙志强, 田佩占, 王继安 . 东北大豆品种生育期结构的初步分析. 大豆科学, 1990,9:198-205
Sun Z Q, Tian P Z, Wang J A . Preliminary study on the growth period structure of soybean varieties in the northeast of China. Soybean Sci, 1990,9:198-205 (in Chinese with English abstract)
[3] 韩天富, 盖钧镒, 陈风云, 邱家驯 . 生育期结构不同的大豆品种的光周期反应和农艺性状. 作物学报, 1998,24:550-557
Han T F, Gai J Y, Chen F Y, Qiu J X . Photoperiod response and agronomic characters of soybean varieties with different growth period structures. Acta Agron Sin, 1998,24:550-557 (in Chinese with English abstract)
[4] 王金陵, 祝其昌 . 大豆生育期遗传的初步研究. 作物学报, 1963,2:333-335
Wang J L, Zhu Q C . The preliminary research on the growth period of soybean genetic. Acta Agron Sin, 1963,2:333-335 (in Chinese)
[5] 吴存祥, 李继存, 沙爱华, 曾海燕, 孙石, 杨光明, 周新安, 常汝镇, 年海, 韩天富 . 国家大豆品种区域试验对照品种的生育期组归属. 作物学报, 2012,38:1977-1987
Wu C X, Li J C, Sha A H, Zeng H Y, Sun S, Yang G M, Zhou X A, Chang R Z, Nian H, Han T F . Maturity group classification of check varieties in national soybean uniform trials of China. Acta Agron Sin, 2012, 38:1977-1987 (in Chinese with English abstract)
[6] 宋雯雯 . 中国大豆品种生育期组的精细划分与应用. 中国科学院大学博士学位论文, 北京, 2016
Song W W . Digitized Classification and Application of Soybean Variety Maturity Groups in China. PhD Dissertation of University of Chinese Academy of Sciences, Beijing,China, 2016 ( in Chinese with English abstract)
[7] Jia H C, Jiang B J, Wu C X, Lu W C, Hou W S, Sun S, Yan H R, Han T F . Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS One, 2014,9:e94139
doi: 10.1371/journal.pone.0094139
[8] Wang Y, Cheng L R, Leng J T, Wu C X, Shao G H, Hou W S, Han T F . Genetic analysis and Quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean (Glycine max( L.) Merr.). Euphytica, 2015,201:275-284
[9] Bernard R L . Two major genes for time of flowering and maturity in soybeans. Crop Sci, 1971,11:242-244
doi: 10.2135/cropsci1971.0011183X001100020022x
[10] Buzzell R I . Inheritance of a soybean flowering response to fluorescent daylength conditions. Can J Genet Cytol, 1971,13:703-707
doi: 10.1080/00222937100770511
[11] Buzzell R I, Voldeng H D . Inheritance of insensitivity to long day length. Soybean Genet Newsl, 1980,7:26-29
[12] McBlain B A, Bernard R L, Cremeens C R, Korczak J F . A procedure to identify genes affecting maturity using soybean isoline testers. Crop Sci, 1987,27:1127-1132
doi: 10.2135/cropsci1987.0011183X002700060008x
[13] Bonato E R, Vello N A . E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol, 1999,22:229-232
[14] Cober E R, Voldeng H D . A new soybean maturity and photoperiod sensitivity locus linked to E1 and T. Crop Sci, 2001,41:698-701
doi: 10.2135/cropsci2001.413698x
[15] Cober E R, Molnar S J, Charette M, Voldeng H D . A new locus for early maturity in soybean. Crop Sci, 2010,50:524-527
doi: 10.2135/cropsci2009.04.0174
[16] Kong F J, Nan H Y, Cao D, Li Y, Wu F F, Wang J L, Lu S J, Yuan X H, Cober E R, Abe J, Liu B H . A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci, 2014,54:2529-2535
doi: 10.2135/cropsci2014.03.0228
[17] Samanfar B, Molnar S J, Charette M, Schoenrock A, Dehne F, Golshani A, Belzile F, Cober E R . Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet, 2017,130:377-390
[18] Ray J D, Hinson K, Mankono J E B . Genetic control of a long-juvenile trait in soybean. Crop Sci, 1995,35:1001-1006
doi: 10.2135/cropsci1995.0011183X003500040012x
[19] 常汝镇, 李星华 . 夏播条件下大豆成熟期基因作用的研究. 中国油料, 1993, ( 3):15-17
Chang R Z, Li X H . Study on effect of maturity genes in soybeans under summer sowing condition. Chin J Oil Crops Sci, 1993, ( 3):15-17 (in Chinese with English abstract)
[20] Xia Z J, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lyu S X, Wu H Y, Tabata S, Harada K . Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA, 2012, 109:2155-2164
[21] Watanabe S, Xia Z J, Hideshima R, Tsubokura Y, Sato S, Yamanaka N, Takahashi R, Anai T, Tabata S, Kitamura K . A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics, 2011,188:395-407
[22] Watanabe S, Hideshima R, Xia Z J, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T . Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics, 2009,182:1251-1262
doi: 10.1534/genetics.108.098772 pmid: 19474204
[23] Tsubokura Y, Matsumura H, Xu M L, Liu B H, Nakashima H, Anai T, Kong F J, Yuan X H, Kanamori H, Katayose Y . Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy, 2013,3:117-134
[24] Yue Y L, Liu N X, Jiang B J, Li M, Wang H, Jiang Z, Pan H T, Xia Q J, Ma Q B, Han T F, Nian H . A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Mol Plant, 2017,10:656-658
[25] Lu S J, Zhao X H, Hu Y L, Liu S L, Nan H Y, Li X M, Fang C, Cao D, Shi X Y, Kong L P, Su T, Zhang F G, Li S C, Wang Z, Yuan X H, Cober E R, Weller J L, Liu B H, Hou X L, Tian Z X, Kong F J . Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017,49:773-779
doi: 10.1038/ng.3819 pmid: 28319089
[26] Cheng L R, Wang Y, Zhang C B, Wu C X, Xu J L, Zhu H Y, Leng J T, Bai Y N, Guan R X, Hou W S, Zhang L J, Han T F . Genetic analysis and QTL detection of reproductive period and post-flowering photoperiod responses in soybean. Theor Appl Genet, 2011,123 : 421-429
doi: 10.1007/s00122-011-1594-8
[27] 王英, 吴存祥, 张学明, 王云鹏, 韩天富 . 不同光周期条件下大豆生育期主基因的效应. 作物学报, 2008,34:1160-1168
Wang Y, Wu C X, Zhang X M, Wang Y P, Han T F . Effects of soybean major maturity genes under different photoperiods. Acta Agron Sin, 2008,34:1160-1168 (in Chinese with English abstract)
[28] Mao T T, Li J Y, Wen Z X, Wu T T, Wu C X, Sun S, Jiang B J, Hou W S, Li W B, Song Q J, Wang D C, Han T F . Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics, 2017,18:415-423
doi: 10.1186/s12864-017-3778-3
[29] 夏正俊 . 大豆光周期反应与生育期基因研究进展. 作物学报. 2013,39:571-579
Xia Z J . Research progresses on photoperiodic flowering and maturity genes in soybean (Glycine max Merr.). Acta Agron Sin, 2013,39:571-579 (in Chinese with English abstract)
[30] Tsubokura Y, Watanabe S, Xia Z J, Kanamori H, Yamagata H, Kaga A, Katayose Y, Abe J, Ishimoto M, Harada K . Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot, 2014,113:429-441
doi: 10.1093/aob/mct269 pmid: 24284817
[31] Xu M L, Xu Z H, Liu B H, Kong F J, Tsubokura Y, Watanabe S, Xia Z J, Harada K, Kanazawa A, Yamada T . Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol, 2013,13:91
doi: 10.1186/1471-2229-13-91
[32] Harada K, Watanabe S, Xia Z J, Tsubokura Y, Yamanaka N, Anai T. Positional cloning of the responsible genes for maturity Loci E1, E2 and E3 in soybean. In: Krezhovaed D eds. Soybean-Genetics and Novel Techniques for Yield Enhancement. Shanghai: InTech, 2011. pp 51-76
doi: 10.5772/21085
[33] Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J . Genetic redundancy in soybean photoresponses associated with duplication of phytochrome A gene. Genetics, 2008,180:996-1007
[34] Hong Z, Lu S X, Wang Y Q, Chen X, Ren H X, Yang J Y, Cheng W, Zong C M, Gu H P, Qiu H M, Wu H Y, Zhang X Z, Cui T T, Xia Z J . Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS One, 2014,9:e97636
[35] Jiang B J, Nan H Y, Gao Y F, Tang L L, Yue Y L, Lu S J, Ma L M, Cao D, Sun S, Wang J L, Wu C X, Yuan X H, Hou W S, Kong F J, Han T F, Liu B H . Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS One, 2014,9:e106042
[36] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G . Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996,36:1327-1336
doi: 10.2135/cropsci1996.0011183X003600050042x
[37] Tian Z X, Wang X B, Lee R, Li Y H, Specht J E, Nelson R L, McClean P E, Qiu L J, Ma J X . Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010,107:8563-8568
doi: 10.1073/pnas.1000088107 pmid: 20421496
[38] Li J C, Wang X B, Song W W, Huang X Y, Zhou J, Zeng H Y, Sun S, Jia H C, Li W B, Zhou X A, Li S Z, Chen P Y, Wu C X, Yong G, Han T F, Qiu L J . Genetic variation of maturity groups and four E genes in the Chinese soybean mini core collection. PLoS One, 2017,12:e0172106
[39] Liu X Q, Wu J A, Ren H X, Qi Y X, Li C Y, Cao J Q, Zhang X Y, Zhang Z P, Cai Z Y, Gai J Y . Genetic variation of world soybean maturity date and geographic distribution of maturity groups. Breed Sci, 2017,67:221-232
doi: 10.1270/jsbbs.16167 pmid: 5515309
[40] 刘汉中 . 大豆引种中发育“延”、“促”效应之再论证. 中国农业大学学报, 1988,7(1):89-96
Liu H Z . A further discussion on “enhancing” and “delaying” effects on soybean development by daylength and temperature during variety introduction. J Chin Agric Univ, 1988,7(1):89-96 (in Chinese with English abstract)
[41] 费志宏, 吴存祥, 孙洪波, 侯文胜, 张宝石, 韩天富 . 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009,35:1525-1531
doi: 10.3724/SP.J.1006.2009.01525
Fei Z H, Wu C X, Sun H B, Hou W S, Zhang B S, Han T F . Identification of photothermal responses in soybean by integrating photoperiod treatments with planting-date experiments. Acta Agron Sin, 2009,35:1525-1531 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01525
[42] 邱丽娟, 常汝镇, 袁翠平, 关荣霞, 刘章雄, 李英慧 . 国外大豆种质资源的基因挖掘利用现状与展望. 植物遗传资源学报, 2006,7(1):1-6
Qiu L J, Chang R Z, Yuan C P, Guan R X, Liu Z X, Li Y H . Prospect and present statue of gene discovery and utilization for introduced soybean germplasm. J Plant Genet Resour, 2006, 7(1):1-6 (in Chinese with English abstract)
[43] 汪越胜, 马宏惠 . 美国的大豆熟期划分及其影响. 安徽农学通报, 2000,6(4):28-29
Wang Y S, Ma H H . The division and influence of soybean maturity in the United State.Anhui Agric Sci Bull, 2000, 6(4):28-29 (in Chinese)
[44] 吴存祥 . 中国不同生态类型大豆品种的生态适应性研究. 华南农业大学博士学位论文, 广东广州, 2009
doi: 10.7666/d.Y1499762
Wu C X . Studies on the Ecological Adaptability of Different Soybean Ecotypes in China. PhD Dissertation of South China Agricultural University, Guangzhou, Guangdong, China, 2009 ( in Chinese with English abstract)
doi: 10.7666/d.Y1499762
[45] Saindon G, Voldeng H D, Beversdorf W D, Buzzell R I . Genetic control of long daylength response in soybean. Crop Sci, 1989,29:1436-1439
doi: 10.2135/cropsci1989.0011183X002900060021x
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!