欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1694-1703.doi: 10.3724/SP.J.1006.2018.01694

• 耕作栽培·生理生化 • 上一篇    下一篇

水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响

赵财,王巧梅,郭瑶,殷文,樊志龙,胡发龙,于爱忠,柴强()   

  1. 甘肃省干旱生境作物学重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2018-02-06 接受日期:2018-07-20 出版日期:2018-11-12 网络出版日期:2018-08-08
  • 通讯作者: 柴强
  • 基金资助:
    本研究由国家公益性行业(农业)科研项目(201503125-3)

Effects of Water-Nitrogen Coupling Patterns on Dry Matter Accumulation and Yield of Wheat under No-tillage with Previous Plastic Mulched Maize

Cai ZHAO,Qiao-Mei WANG,Yao GUO,Wen YIN,Zhi-Long FAN,Fa-Long HU,Ai-Zhong YU,Qiang CHAI()   

  1. Gansu Provincial Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2018-02-06 Accepted:2018-07-20 Published:2018-11-12 Published online:2018-08-08
  • Contact: Qiang CHAI
  • Supported by:
    This study was supported by the China Special Fund for Agro-scientific Research in the Public Interest(201503125-3)

摘要:

前茬地膜玉米免耕种植后茬小麦水氮高效利用生产技术是绿洲灌区作物高效生产的新型农田管理技术。为构建该区地膜减量和水氮高效生产技术, 2015—2017年通过3年田间试验, 研究两种耕作方式、2种灌水水平和3个施氮量组合对小麦干物质积累和产量及产量构成的协同效应, 其中耕作方式为覆膜玉米茬免耕直播(NT)和玉米茬传统耕作(CT), 灌水量为传统灌水(I2)和传统灌水减量20% (I1), 施氮量为纯N 225 kg hm -2 (N3)、180 kg hm -2 (N2)和135 kg hm -2 (N1)。结果表明, 耕作方式、灌水水平、施氮量对小麦群体生长速率、干物质积累量均有显著影响。与CT相比, NT显著增大全生育期生长速率, 提高22.0%~28.0%, NT促进小麦地上干物质积累, 提高6.4%~7.4%, 收获期生物产量提高5.4%~15.1%。免耕低灌(NTI1)较传统耕作高灌(CTI2)的生长速率增大7.7%~13.4%, 干物质积累量提高3.1%~5.9%, 收获期生物产量提高8.7%~10.5%。免耕低灌中施氮(NTI1N2)较传统耕作高灌中、高施氮(CTI2N2、CTI2N3) 生长速率分别增大6.9%~20.5%与4.1%~14.0%, 收获期生物产量分别提高7.8%~9.7%与4.8%~10.2%。NT比CT增产10.1%~10.4%, NTI1较CTI2、CTI1分别增产13.0%~14.8%与9.4%~10.1%, NTI1N2比CTI2N2、CTI2N3分别增产3.7%~9.8%与15.2%~22.0%。从产量构成因素分析, NTI1N2提高了单位面积成穗数、穗粒数和千粒重, NTI1N2处理组合更有利于穗数、千粒重的增加。通径分析进一步证明, NTI1N2增产的主要原因是增加了单位面积穗数和千粒重。因此, 在施氮量为180 kg hm -2的基础上, 玉米茬地膜再利用免耕技术组装减少20%灌溉量(1920 m 3 hm -2)轮作小麦模式是河西灌区小麦高效生产的可行措施。

关键词: 春小麦, 水氮耦合, 耕作措施, 干物质积累, 作物生产力

Abstract:

The high-efficient utilization of water and nitrogen in wheat production under no tillage with previous plastic mulched maize is a new field management technology in oasis irrigation areas. In order to construct the efficient production technology of water and nitrogen in this area, a three-year field experiment was conducted in 2015 to 2017 to determine synergetic effect on dry matter accumulation, yield and its components under two kinds of tillage practices for previous plastic mulched maize (no tillage with plastic mulching, NT; conventional tillage with plastic mulching, CT), two irrigation levels (conventional irrigation, I2; reduced 20% irrigation, I1) and three nitrogen levels (225 kg ha -1, N3; 180 kg ha -1, N2; 135 kg ha -1, N1). The tillage practices, irrigation and nitrogen application had significant effect on crop growth rate and dry matter accumulation of wheat. Compared with CT practice, NT significantly increased crop growth rate and dry matter accumulation of wheat by 22.0% to 28.0% and 6.4% to 7.4%, respectively, during the entire growth period; and improved biomass yield at harvesting stage by 5.4% to 15.1%. Similarly, no tillage with low irrigation (NTI1) increased crop growth rate and dry matter accumulation of wheat by 7.7% to 13.4% and 3.1 to 5.9%, respectively, during the entire growth period, and improved biomass yield at harvesting stage by 8.7% to 10.5%, as compared with conventional tillage with high irrigation (CTI2). No tillage with low irrigation and moderate nitrogen application (NTI1N2) improved crop growth rate by 6.9% to 20.5% and 4.1% to 14.0%, and enhanced biomass yield at harvesting stage by 7.8% to 9.7% and 4.8% to 10.2%, respectively, in comparison to conventional tillage with high irrigation and moderate, high nitrogen (CTI2N2, CTI2N3). Thus, NT practice had greater grain yield of 10.1% to 10.4% more than CT, NTI1 boosted grain yield by 13.0% to 14.8% and 9.4% to 10.1% over CTI2 and CTI1 patterns, respectively. NTI1N2 enhanced grain yield by 3.7% to 9.8% and 15.2% to 22.0%, in comparison to CTI2N2 and CTI2N3 treatments, respectively. In addition, the NTI1N2 treatment significantly increased spike number (SN), kernel number per spike (KNS) and thousand-kernel weight (TKW), and especially SN and TKW of the NTI1N2 treatment were higher than these of other treatments. The path analysis further confirmed that the increase of SN and TKW was the main reason for boosting grain yield of wheat under NTI1N2 treatment. Therefore, the model under no-tillage and previous plastic mulched maize combined with low irrigation (1920 m 3 ha -1) and moderate nitrogen (180 kg ha -1) is feasible for high-efficient production of wheat in an arid oasis irrigation area.

Key words: spring wheat, water-nitrogen coupling, tillage practice, dry matter accumulation, crop productivity

图1

不同耕作措施及水氮耦合模式下小麦干物质积累动态NT: 免耕地膜两年利用; CT: 传统耕作; I2: 传统灌水(2400 m3 hm-2); I1: 传统灌水减量20% (1920 m3 hm-2); N3: 传统施氮(225 kg hm-2); N2: 传统施氮减量20% (180 kg hm-2); 传统施氮减量40% (135 kg hm-2)。误差线表示标准差(n = 3)。"

表1

不同耕作措施及水氮耦合模式下不同生育阶段小麦群体生长速率"

耕作措施
Tillage practice
灌水水平
Irrigation
level
施氮水平
Fertilizer
level
苗期-拔节期
Seedling to
jointing
拔节-孕穗期
Jointing to booting
孕穗-灌浆初期
Booting to early-filling
灌浆初期-中期
Early-filling to mid-filling
灌浆中期-收获期
Mid-filling to
harvesting
2016
NT I2 N3 151 b 380 a 269 g 393 a 170 d
N2 140 cd 349 b 287 f 387 a 105 f
N1 135 d 264 e 368 cd 241 c 196 c
I1 N3 193 a 302 cd 406 b 213 e 230 b
N2 156 b 279 de 352 d 302 b 253 a
N1 144 c 226 g 409 b 298 b 87 g
CT I2 N3 148 bc 314 c 353 d 230 cd 143 e
N2 130 d 296 d 319 e 223 d 232 b
N1 136 d 280 de 314 e 183 f 139 e
I1 N3 109 e 270 e 425 a 200 e 81 h
N2 110 e 271 e 358 d 217 de 103 f
N1 102 f 244 f 383 c 208 e 78 h
2017
NT I2 N3 112 a 297 bc 353 de 335 b 194 c
N2 97 b 337 a 346 e 384 a 184 d
N1 81 ef 299 bc 357 de 306 c 167 e
I1 N3 84 cde 327 a 378 d 347 b 206 b
N2 87 cd 281 de 426 c 305 c 219 a
N1 91 c 224 f 475 a 316 c 195 c
CT I2 N3 99 b 304 b 342 ef 244 f 209 b
N2 85 cd 298 bc 337 ef 308 c 222 a
N1 86 cd 295 c 331 f 276 d 160 f
I1 N3 74 f 309 b 449 b 273 de 183 d
N2 88 cd 277 e 463 ab 313 c 198 bc
N1 54 g 291 cd 446 b 254 ef 130 g
显著性值 (P)
耕作措施 Tillage practice (T) 0.002 NS NS 0.000 0.000
灌水水平 Irrigation level (I) NS 0.007 0.000 0.040 0.032
施氮量 Nitrogen level (N) 0.000 0.000 0.000 0.000 0.000
耕作措施×灌水水平 T×I NS NS NS NS NS
耕作措施×施氮量 T×N 0.001 0.009 0.024 0.002 0.000
灌水水平×施氮量 I×N NS 0.004 0.000 0.000 0.015
耕作措施×灌水水平×施氮量 T×I×N NS 0.016 0.010 0.038 NS

表2

不同耕作措施及水氮耦合模式下小麦的产量及产量构成因素"

耕作措施
Tillage practice
灌水水平
Irrigation level
施氮水平
Nitrogen level
籽粒产量
Grain yield
(kg hm-2)
产量构成因素 Yield component
穗数 SN
(×104 hm-2)
穗粒数
KNS
千粒重TKW (g)
2016
NT I2 N3 8734 abc 811.1 c 45.8 b 46.0 de
N2 8979 ab 852.8 b 46.1 b 51.1 ab
N1 7908 def 783.3 e 45.2 b 44.7 de
I1 N3 9133 a 875.0 a 49.7 a 51.9 a
N2 9046 ab 861.1 ab 50.2 a 50.4 abc
N1 8553 abcd 805.6 cd 45.5 b 47.1 cd
CT I2 N3 7416 ef 722.2 g 44.3 b 45.8 de
N2 8731 abc 794.4 de 43.1 bc 46.3 de
N1 7132 f 706.9 h 39.7 c 42.9 e
I1 N3 8227 cde 798.6 cde 44.9 b 48.2 bcd
N2 8189 cde 758.3 f 44.6 b 47.6 bcd
N1 7866 def 729.2g 43.0 bc 45.0 de
2017
NT I2 N3 8485 b 783 cde 41.3 abc 45.0 cde
N2 9148 a 840 ab 44.3 a 49.2 a
N1 7667 e 755 de 40.2 abc 42.8 def
I1 N3 8927 a 846 ab 43.6 ab 47.4 abc
N2 8851 a 859 a 44.7 a 48.8 ab
N1 7863 de 774 cde 42.2 ab 45.7 bcd
CT I2 N3 7685 e 745 e 40.3 abc 42.3 def
N2 8062 cd 739 ef 41.4 abc 44.4 cde
N1 6945 f 693 f 37.5 c 40.5 f
I1 N3 8238 bc 809 abc 41.9 abc 45.1 cd
N2 8141 cd 806 bcd 41.2 ac 47.1 abc
N1 7060 f 764 cde 39.0 bc 41.6 ef
显著性值 (P)
耕作措施 Tillage practice (T) 0.000 0.000 0.000 0.000
灌水水平 Irrigation level (I) 0.000 0.013 0.000 0.004
施氮量 Nitrogen level (N) 0.000 0.002 0.003 0.000
耕作措施×灌水水平 T×I NS NS NS NS
耕作措施×施氮量 T×N NS NS NS NS
灌水水平×施氮量 I×N 0.000 NS NS 0.003
耕作措施×灌水水平×施氮量 T×I×N NS NS NS NS

表3

不同处理小麦籽粒产量与产量因素的相关系数和通径系数"

年份
Year
指标
Parameter
与籽粒产量的简单相关系数
Correlation coefficient with yield
直接通径系数
Direct path coefficient
间接通径系数 Indirect path coefficient
穗数 SN 穗粒数 KSN 千粒重 TKW
2016 穗数 SN 0.764** 0.551** -0.112 0.325
穗粒数KNS 0.391* -0.163 0.381 0.173
千粒重TKW 0.781** 0.428** 0.419 -0.066
2017 穗数 SN 0.747** 0.336* 0.076 0.335
穗粒数KNS 0.635** 0.112 0.228 0.296
千粒重TKW 0.786** 0.488** 0.231 0.068
[1] 徐振剑, 华珞, 蔡典雄, 高月亮, 耿琪鹏, 何婷婷 . 农田水肥关系研究现状. 首都师范大学学报: 自然科学版, 2007,28:83-88
Xu Z J, Hua L, Cai D X, Gao Y L, Geng Q P, He T T . Research of relationship between water and fertilizers on dry land. J Capital Norm Univ( Nat Sci Edn), 2007,28:83-88 (in Chinese with English abstract)
[2] 何海兵, 杨茹, 廖江, 武立权, 孔令聪, 黄义德 . 水分和氮肥管理对灌溉水稻优质高产高效调控机制的研究进展. 中国农业科学, 2016,49:305-318
doi: 10.3864/j.issn.0578-1752.2016.02.011
He H B, Yang R, Liao J, Wu L Q, Kong L C, Huang Y D . Research advance of high-yielding and high efficiency in resource use and improving grain quality of rice plants under water and nitrogen managements in an irrigated region. Sci Agric Sin, 2016,49:305-318 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2016.02.011
[3] Wang Q, Li F, Zhao L, Zhang E, Shi S, Zhao W, Song W, Vance M M . Effects of irrigation and nitrogen application rates on nitrate nitrogen distribution and fertilizer nitrogen loss, wheat yield and nitrogen uptake on a recently reclaimed sandy farmland. Plant Soil, 2010,337:325-339
doi: 10.1007/s11104-010-0530-z
[4] 赵建红, 李玥, 孙永健, 李应洪, 孙加威, 代邹, 谢华英, 徐徽, 马均 . 灌溉方式和氮肥运筹对免耕厢沟栽培杂交稻氮素利用及产量的影响. 植物营养与肥料学报, 2016,22:609-617
doi: 10.11674/zwyf.15067
Zhao J H, Li Y, Sun Y J, Li Y H, Sun J W, Dai Z, Xie H Y, Xu H, Ma J . Effects of irrigation and nitrogen management on nitrogen use efficiency and yield of hybrid rice cultivated in ditches under no-tillage. Plant Nutr Fert Sci, 2016,22:609-617 (in Chinese with English abstract)
doi: 10.11674/zwyf.15067
[5] 赵良菊, 肖洪浪, 李新荣, 罗芳, 李守中 . 灌水量对土壤水肥分布与春小麦水分利用效率的影响. 中国沙漠, 2005,25:256-261
doi: 10.3321/j.issn:1000-694X.2005.02.015
Zhao L J, Xiao H L, Li X R, Luo F, Li S Z . Effect of different irrigation quota on water-nutrient distribution in soil profile and water use efficiency of spring wheat. J Desert Res, 2005,25:256-261 (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-694X.2005.02.015
[6] 李友军, 黄明, 吴金芝, 姚宇卿, 吕军杰 . 不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响. 水土保持学报, 2006,20:42-45
doi: 10.3321/j.issn:1009-2242.2006.02.011
Li Y J, Huang M, Wu J Z, Yao Y Q, Lyu J J . Effects of different tillage on utilization and run-off of water and nutrient in sloping farmland of Yuxi dryland area. J Soil Water Conserv, 2006,20:42-45 (in Chinese with English abstract)
doi: 10.3321/j.issn:1009-2242.2006.02.011
[7] 李强, 王朝辉, 戴健, 李富翠, 李孟华, 赵护兵, 曹群虎 . 氮肥调控与地表覆盖对旱地冬小麦氮素吸收及残留淋失的影响. 中国农业科学, 2013,46:1380-1389
doi: 10.3864/j.issn.0578-1752.2013.07.008
Li Q, Wang Z H, Dai J, Li F C, Li M H, Zhao H B, Cao Q H . Effects of nitrogen fertilizer regulation and soil surface mulching on nitrogen use by winter wheat and its residue and leaching in dryland soil. Sci Agric Sin, 2013,46:1380-1389 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.07.008
[8] 杨君林, 马忠明, 张立勤, 王智琦, 连彩云, 薛亮 . 施氮量对河西绿洲灌区垄作春小麦土壤水氮动态及吸收利用的影响. 麦类作物学报, 2015,35:1262-1268
doi: 10.7606/j.issn.1009-1041.2015.09.13
Yang J L, Ma Z M, Zhang L Q, Wang Z Q, Lian C Y, Xue L . Effect of nitrogen fertilizer rate on soil water-nitrogen dynamics and absorption and utilization of ridge culture spring wheat in Hexi oasis irrigation distract. J Triticeae Crops, 2015,35:1262-1268 (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2015.09.13
[9] 张国桥, 王静, 刘涛 , William G, 褚贵新. 水肥一体化施磷对滴灌玉米产量、磷素营养及磷肥利用效率的影响. 植物营养与肥料学报, 2014,20:1103-1109
Zhang G Q, Wang J, Liu T, William G, Chu G X . Effect of water and P fertilizer coupling on corn yield, P uptake, and P utilization efficiency with drip irrigation in a calcareous soil. Plant Nutr Fert Sci, 2014,20:1103-1109 (in Chinese with English abstract)
[10] 殷文, 陈桂平, 柴强, 赵财, 冯福学, 于爱忠, 胡发龙, 郭瑶 . 前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响. 中国农业科学, 2016,49:2898-2908
Yin W, Chen G P, Chai Q, Zhao C, Feng F X, Yu A Z, Hu F L, Guo Y . Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi Corridor. Sci Agric Sin, 2016,49:2898-2908 (in Chinese with English abstract)
[11] Wu Y, Huang F, Jia Z, Ren X, Cai T . Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Till Res, 2017,166:113-121
[12] 赵财, 柴强, 冯福学, 殷文, 胡发龙, 周文斌 . 不同灌水水平下一膜两年覆盖间作农田耗水特征及经济效益研究. 中国生态农业学报, 2016,24:744-752
doi: 10.13930/j.cnki.cjea.151041
Zhao C, Chai Q, Feng F X, Yin W, Hu F L, Zhou W B . Characteristics and economic benefits of water consumption in intercropping fields with one plastic film mulching for two years and different irrigation levels. Chin J Eco-Agric, 2016,24:744-752 (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.151041
[13] Su Z, Zhang J, Wu W, Cai D, Lyu J, Jiang G, Huang J, Gao J, Hartmann R, Gabriels D . Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric Water Manage, 2007,87:307-314
doi: 10.1016/j.agwat.2006.08.005
[14] 卢秉林, 包兴国, 张久东, 胡志桥, 杨新强, 曹卫东, 杨文玉, 李全福 . 河西绿洲灌区玉米与绿肥间作模式对作物产量和经济效益的影响. 中国土壤与肥料, 2014, ( 2):67-71
doi: 10.11838/sfsc.20140214
Lu B L, Bao X G, Zhang J D, Hu Z Q, Yang X Q, Cao W D, Yang W Y, Li Q F . Effects of different intercropping systems of corn and green manure on crop yield and economic benefit in Hexi Oasis Irrigation. China Soils Fert, 2014, ( 2):67-71 (in Chinese with English abstract)
doi: 10.11838/sfsc.20140214
[15] Głąb T, Ścigalska B, Łabuz B . Effect of crop rotation on the root system morphology and productivity of triticale (Triticosecale Wittm). J Agric Sci, 2014,152:642-654
doi: 10.1017/S0021859613000282
[16] Bidinger F, Musgrave R B, Fischer R A . Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature, 1977,270:431-433
doi: 10.1038/270431a0
[17] Chen L, Qiao Z J, Wang J J . Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agri Sci Tech, 2015,16:1425-1428
[18] 赵财, 陈桂平, 柴强, 于爱忠, 殷文 . 不同灌水水平下少耕地膜覆盖对玉米农田土壤温度和水分利用效率的影响. 干旱地区农业研究, 2017,35:152-157
Zhao C, Chen G P, Chai Q, Yu A Z, Yin W . The effect of minimum tillage and mulching on soil temperature and WUE of maize under different irrigation levels. Agric Res Arid Areas, 2017,35:152-157 (in Chinese with English abstract)
[19] 苏永中, 张珂, 刘婷娜, 王婷 . 免耕旧膜再利用对玉米产量及灌溉水生产力的影响. 农业环境科学学报, 2016,33:491-498
doi: 10.13254/j.jare.2016.0055
Su Y Z, Zhang K, Liu T N, Wang T . Effects of no-tillage combined with reused plastic film mulching on maize yield and irrigation water productivity. J Agro-Environ Sci, 2016,33:491-498 (in Chinese with English abstract)
doi: 10.13254/j.jare.2016.0055
[20] 高翔, 龚道枝, 顾峰雪, 郝卫平, 梅旭荣 . 覆膜抑制土壤呼吸提高旱作春玉米产量. 农业工程学报, 2014,30(6):62-70
Gao X, Gong D Z, Gu F X, Hao W P, Mei X R . Inhibiting soil respiration and improving yield of spring maize in fields with plastic film mulching. Trans CSAE, 2014,30(6):62-70 (in Chinese with English abstract)
[21] 宋明丹, 李正鹏, 冯浩 . 不同水氮水平冬小麦干物质积累特征及产量效应. 农业工程学报, 2016,32(2):119-126
Song M D, Li Z P, Feng H . Effects of irrigation and nitrogen regimes on dry matter dynamic accumulation and yield of winter wheat. Trans CSAE, 2016,32(2):119-126 (in Chinese with English abstract)
[22] 马东辉, 王月福, 周华, 孙虎 . 氮肥和花后土壤含水量对小麦干物质积累、运转及产量的影响. 麦类作物学报, 2007,27:847-851
doi: 10.3969/j.issn.1009-1041.2007.05.021
Ma D H, Wang Y F, Zhou H, Sun H . Effect of postanthesis soil water status and nitrogen on grain yield and canopy biomass accumulation and transportation of winter wheat. J Triticeae Crops, 2007,27:847-851 (in Chinese with English abstract)
doi: 10.3969/j.issn.1009-1041.2007.05.021
[23] 王国兴, 徐福利, 王渭玲, 于丹, 王伟东 . 氮磷钾及有机肥对马铃薯生长发育和干物质积累的影响. 干旱地区农业研究, 2013,31(3):106-111
doi: 10.3969/j.issn.1000-7601.2013.03.017
Wang G X, Xu F L, Wang W L, Yu D, Wang W D . Effects of N-P-K and organic fertilizers on growth and dry matter accumulation of potato. Agric Res Arid Areas, 2013,31(3):106-111 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7601.2013.03.017
[24] 张东昱, 成军花, 夏叶, 张文斌, 张爱霞, 陈修斌, 李翊华 . 河西走廊加工型马铃薯水肥耦合效应量化管理指标研究. 土壤, 2012,44:987-990
Zhang D Y, Cheng J H, Xia Y, Zhang W B, Zhang A X, Chen X B, Li Y H . Study on quantitative management indicators of water-fertilizer coupling effect for Hexi Corridor processing potato. Soils, 2012,44:987-990 (in Chinese with English abstract)
[25] 王平, 陈举林, 王均华, 闫保罗, 李平海, 侯玮, 宗燕 . 灌水模式对夏玉米耗水特性和干物质积累及分配的影响. 中国农学通报, 2013,29:20-27
doi: 10.3969/j.issn.1000-6850.2013.24.006
Wang P, Chen J L, Wang J H, Yan B L, Li P H, Hou W, Zong Y . The effect of irrigation treatments on water consumption characteristic and dry matter accumulationin summer maize ( Zea mays). Chin Agric Bull, 2013,29:20-27 (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2013.24.006
[26] 赵明, 李建国, 张宾, 董志强, 王美云 . 论作物高产挖潜的补偿机制. 作物学报, 2006,32:1566-1573
doi: 10.3321/j.issn:0496-3490.2006.10.023
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y . The compensatory mechanism in exploring crop production potential. Acta Agron Sin, 2006,32:1566-1573 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2006.10.023
[27] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶 . 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016,42:751-757
doi: 10.3724/SP.J.1006.2016.00751
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y . Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016,42:751-757 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00751
[28] 于爱忠, 柴强 . 供水与地膜覆盖对干旱灌区玉米产量的影响. 作物学报, 2015,41:778-786
doi: 10.3724/SP.J.1006.2015.00778
Yu A Z, Chai Q . Effects of plastic film mulching and irrigation on yield of corn in arid oasis irrigation area. Acta Agron Sin, 2015,41:778-786 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00778
[1] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[2] 尔晨, 林涛, 夏文, 张昊, 徐高羽, 汤秋香. 灌溉定额和施氮量对机采棉田水分运移及硝态氮残留的影响[J]. 作物学报, 2022, 48(2): 497-510.
[3] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555.
[4] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[5] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[6] 侯慧芝, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9): 1398-1407.
[7] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[8] 马明生, 郭贤仕, 柳燕兰. 全生物降解地膜覆盖对旱地土壤水分状况及春小麦产量和水分利用效率的影响[J]. 作物学报, 2020, 46(12): 1933-1944.
[9] 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288.
[10] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[11] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[12] 杨沈斌, 徐莎莎, 江晓东, 石春林, 王应平, 申双和. 作物模型中单叶最大光合作用速率的温度响应修订[J]. 作物学报, 2018, 44(05): 750-761.
[13] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422.
[14] 马忠明,陈娟,吕晓东,刘婷婷. 水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响[J]. 作物学报, 2017, 43(11): 1705-1714.
[15] 林祥,王东*. 不同底墒条件下补灌对冬小麦耗水特性、产量和水分利用效率的影响[J]. 作物学报, 2017, 43(09): 1357-1369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!