欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (5): 740-754.doi: 10.3724/SP.J.1006.2019.82030

• 耕作栽培·生理生化 • 上一篇    下一篇

不同土壤耕作模式对双季水稻生理特性与产量的影响

唐海明(),肖小平,李超,汤文光,郭立君,汪柯,程凯凯,潘孝晨,孙耿   

  1. 湖南省土壤肥料研究所, 湖南长沙 410125
  • 收稿日期:2018-05-26 接受日期:2019-01-12 出版日期:2019-05-12 网络出版日期:2019-02-26
  • 通讯作者: 唐海明
  • 基金资助:
    本研究由湖南省自然科学基金杰出青年基金项目(2017JJ1018);国家公益性行业(农业)科研专项(201503123);国家自然科学基金项目(31872851);国家重点研发计划项目(2018YFD0301004)

Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice

Hai-Ming TANG(),Xiao-Ping XIAO,Chao LI,Wen-Guang TANG,Li-Jun GUO,Ke WANG,Kai-Kai CHENG,Xiao-Chen PAN,Gen SUN   

  1. Hunan Soil and Fertilizer Institute, Changsha 410125, Hunan, China
  • Received:2018-05-26 Accepted:2019-01-12 Published:2019-05-12 Published online:2019-02-26
  • Contact: Hai-Ming TANG
  • Supported by:
    This study was supported by the Hunan Provincial Natural Science Foundation of China(2017JJ1018);the Public Research Funds Projects of Agriculture, Ministry of Agriculture of the China(201503123);the National Natural Science Foundation of China(31872851);the National Key Research and Development Project(2018YFD0301004)

摘要:

为探明双季稻区不同土壤耕作模式下双季水稻生理特性、干物质积累及产量的变化, 本文以双季稻-紫云英大田定位试验为平台, 设双季水稻翻耕+秸秆还田(CT)、双季水稻旋耕+秸秆还田(RT)、双季水稻免耕+秸秆还田(NT)、双季水稻旋耕+秸秆不还田(RTO, 对照) 4种土壤耕作处理, 于2016—2017年取样, 系统分析了不同处理对双季水稻植株叶片保护性酶活性、光合特性、干物质积累及产量的影响。研究结果表明, 早、晚稻各个主要生育时期CT和RT处理植株叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均显著高于RTO处理(P<0.05), 而叶片丙二醛(MDA)含量均显著低于RTO处理(P<0.05)。CT处理植株叶片的净光合速率(Pn)、蒸腾速率(Tr)和叶片气孔导度(Gs)均显著高于RTO处理(P<0.05), 均表现为CT>RT>NT>RTO。CT和RT处理水稻植株物质生产能力强, 干物质积累多, 而且在各器官间的分配合理。2个年份的早稻产量均以CT处理最高, 均显著高于RTO处理(P<0.05), 比RTO处理增加731.1~733.3 kg hm -2; 晚稻产量均以CT处理为最高, 均显著高于RTO处理(P<0.05), 比RTO处理增加582.5~717.6 kg hm -2。总之, 土壤翻耕、旋耕结合秸秆还田处理有利于提高双季水稻叶片保护性酶活性、光合特性和干物质积累量, 为水稻高产奠定了生理和生物学基础。

关键词: 水稻, 土壤耕作, 生理特性, 保护性酶, 产量

Abstract:

In order to explore the effects of different soil tillage systems on physiological characteristics, dry matter accumulation and grain yield, a fixed location field experiment was conducted using early and late double-cropping rice and Chinese milk vetch (Astragalus sinicus L.) system with four soil tillage treatments including conventional tillage with residue incorporation (CT), rotary tillage with residue incorporation (RT), no-tillage with residue retention (NT), and rotary tillage with residue removed as control (RTO) from 2016 to 2017. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in leaves of CT, RT treatments were increased as compared with those of RTO treatment at different main growth stages of early and late rice. Meanwhile, malondialdehyde (MDA) contents in leaves of CT and RT treatments were decreased. At different main growth stages of early and late rice, the activities of SOD, POD, and CAT in leaves of CT and RT treatments were significantly higher than those of RTO treatment (P<0.05), while MDA contents of CT and RT treatments were significantly lower than those of RTO treatment (P<0.05). Meanwhile, the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs) in leaves of CT treatment were significantly higher than those of RTO treatment (P < 0.05), showing an order of CT > RT > NT > RTO. The results also indicated that the total dry matter accumulation of early and late rice were increased, and its reasonable distribution of rice plant in CT and RT treatments. In 2016 and 2017, the grain yield of early and late rice in CT treatment was significantly higher than that in RTO treatment (P<0.05), with an increase of 731.1-733.3 kg ha -1 and 582.5-717.6 kg ha -1, respectively. As a result, it is an effective way for improving protective enzyme activities and photosynthetic characteristics in leaves, dry matter accumulation of rice by conventional tillage and rotational tillage combined with residue incorporation practices, which results in higher grain yield of rice.

Key words: rice, soil tillage, physiological characteristics, protective enzyme, rice yield

图1

不同土壤耕作方式对水稻叶片SPAD值的影响 CT: 双季水稻翻耕+秸秆还田; RT: 双季水稻旋耕+秸秆还田; NT: 双季水稻免耕+秸秆还田; RTO: 双季水稻旋耕+秸秆不还田。SS: 苗期; TS: 分蘖期; BS: 孕穗期; HS: 齐穗期; MS: 成熟期。标明不同小写字母的柱值在不同处理之间差异达0.05显著水平。"

图2

不同土壤耕作方式对水稻叶片MDA含量的影响 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

图3

不同土壤耕作方式对水稻叶片SOD活性的影响 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

图4

不同土壤耕作方式对水稻叶片POD活性的影响 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

图5

不同土壤耕作方式对水稻叶片CAT活性的影响 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

图6

不同土壤耕作方式下水稻植株叶片净光合速率的变化 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

图7

不同土壤耕作方式下水稻植株叶片气孔导度的变化 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

图8

不同土壤耕作方式下水稻植株叶片蒸腾速率的变化 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

图9

不同土壤耕作方式下水稻植株叶面积指数的变化特征 处理同图1。图中不同小写字母表示不同处理之间差异达0.05显著水平。"

表1

不同土壤方式下水稻植株群体干物重变化特征"

表2

不同土壤耕作方式下水稻植株茎、叶和穗群体干物重变化特征"

表3

不同土壤耕作方式对水稻产量及构成因素的影响"

年份
Year
处理
Treatment
有效穗
Effective panicle
(×104 hm-2)
每穗粒数
Spikelets per panicle
结实率
Seed setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
收获指数Harvest index
早稻 Early rice
2016 CT 366.8±9.2a 105.1±3.0a 78.56±2.27a 24.65±0.68a 6469.5±230.4a 0.50±0.01a
RT 360.6±10.6a 102.8±2.9a 75.82±2.10ab 24.54±0.71a 6270.3±230.4ab 0.51±0.01a
NT 351.3±10.1a 100.3±2.8a 72.64±2.24ab 24.23±0.70a 6036.7±162.9ab 0.52±0.02a
RTO 346.9±7.6a 100.5±2.9a 70.25±2.03b 24.16±0.70a 5736.2±163.8b 0.52±0.02a
2017 CT 367.9±11.1a 103.2±2.6a 78.86±2.24a 24.73±0.62a 6543.6±166.5a 0.48±0.01a
RT 362.1±11.4a 100.9±2.4a 76.14±2.14ab 24.65±0.64a 6369.4±171.9ab 0.49±0.01a
NT 353.3±10.7a 98.4±2.8a 72.96±2.16ab 24.32±0.66a 6088.7±160.2ab 0.50±0.01a
RTO 348.5±12.5a 98.6±2.2a 70.53±2.12b 24.24±0.60a 5812.5±163.8b 0.50±0.01a
晚稻 Late rice
2016 CT 369.8±10.6a 103.5±2.8a 83.15±2.39a 25.31±0.71a 6970.2±144.9a 0.49±0.01a
RT 362.0±10.3a 101.8±2.8a 82.83±2.39ab 25.33±0.73a 6787.5±100.8ab 0.50±0.01a
NT 356.4±10.2a 100.3±2.8a 82.16±2.37ab 25.15±0.70a 6670.6±144.9ab 0.52±0.02a
RTO 355.7±10.2a 98.6±2.7a 80.27±2.32b 25.04±0.71a 6387.7±169.2b 0.53±0.02a
2017 CT 366.5±10.6a 102.1±2.7a 84.24±2.35a 25.42±0.71a 6919.1±103.5a 0.47±0.01a
RT 358.9±10.3a 100.4±2.8a 83.92±2.37ab 25.44±0.74a 6760.4±137.7ab 0.48±0.01a
NT 353.3±10.8a 98.9±2.6a 83.66±2.38ab 25.27±0.75a 6546.6±115.2ab 0.49±0.01a
RTO 352.9±10.7a 97.2±2.7a 81.37±2.31b 25.13±0.70a 6201.5±111.6b 0.50±0.01a
[1] Huang M, Zou Y, Jiang P, Xia B, Feng Y, Cheng Z, Mo Y . Effect of tillage on soil and crop properties of wet-seeded flooded rice. Field Crops Res, 2012,129:28-38.
doi: 10.1016/j.fcr.2012.01.013
[2] Roger-Estrade J, Anger C, Bertrand M, Richard G . Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res, 2010,111:33-40.
doi: 10.1016/j.still.2010.08.010
[3] An V D P, Govers G, Diels J, Gillijns K, Demuzere M . Assessing the effect of soil tillage on crop growth: a meta-regression analysis on European crop yields under conservation agriculture. Eur J Agron, 2010,33:231-241.
doi: 10.1016/j.eja.2010.05.008
[4] Huang S, Sun Y N, Rui W Y, Liu W R, Zhang W J . Long-term effect of no-tillage on soil organic carbon fractions in a continuous maize cropping system of northeast China. Pedosphere, 2010,20:285-292.
doi: 10.1016/S1002-0160(10)60016-1
[5] 石彦琴, 高旺盛, 陈源泉, 隋鹏, 杨斌, 汪洪焦, 聂紫瑾 . 耕层厚度对华北高产灌溉农田土壤有机碳储量的影响. 农业工程学报, 2010,26(11):85-90.
Shi Y Q, Gao W S, Chen Y Q, Sui P, Yang B, Wang H J, Nie Z J . Effect of topsoil thickness on soil organic carbon in high-yield and irrigated farmland in North China. Trans CSAE, 2010,26(11):85-90 (in Chinese with English abstract).
[6] 汤军, 黄山, 谭雪明, 石庆华, 潘晓华 . 不同耕作方式对机插双季水稻产量的影响. 江西农业大学学报, 2014,36:996-1001.
Tang J, Huang S, Tan X M, Shi Q H, Pan X H . Effect of different tillage regimes on rice yield under mechanical transplanting in a double rice cropping system. Acta Agric Univ Jiangxiensis, 2014,36:996-1001 (in Chinese with English abstract).
[7] 姚秀娟 . 翻耕与旋耕作业对水稻生产的影响. 现代化农业, 2007, ( 7):27-28.
Yao S J . Effects of tillage and rotary tillage on rice production. Modern Agric, 2007, ( 7):27-28 (in Chinese with English abstract).
[8] 徐尚起, 张明园, 孙国峰, 汤文光, 陈阜, 张海林 . 应用耕作指数评价耕作措施对双季稻田土壤质量的影响. 中国农业科学, 2011,44:3999-4006.
Xu S Q, Zhang M Y, Sun G F, Tang W G, Chen F, Zhang H L . Assessment of tillage effects on soil quality for double-rice paddy with tilth index. Sci Agric Sin, 2011,44:3999-4006 (in Chinese with English abstract).
[9] 全妙华, 胡爱生, 欧立军, 胡冬炎, 李必湖 . 耕作方式对水稻光合及根系生理特性的影响. 杂交水稻, 2012,27(3) : 71-75.
Quan M H, Hu A S, Ou L J, Hu D Y, Li B H . Effects of tillage mode on characteristics of photosynthesis and root growth of rice. Hybrid Rice, 2012,27(3):71-75 (in Chinese with English abstract).
[10] 刘金花, 秦江涛, 张斌, 夏桂龙, 陆金贵, 甘三芽, 余瑞新 . 赣东北双季水稻轻型种植和耕作模式评价. 土壤, 2012,44:482-491.
Liu J H, Qin J T, Zhang B, Xia G L, Lu J G, Gan S Y, Yu R X . Effects of different light cultivation on rice growth, yields and economic benefits in northeast area of Jiangxi province. Soils, 2012,44:482-491 (in Chinese with English abstract).
[11] 朱利群, 张大伟, 卞新民 . 连续秸秆还田与耕作方式轮换对稻麦轮作田土壤理化性状变化及水稻产量构成的影响. 土壤通报, 2011,42:81-85.
Zhu L Q, Zhang D W, Bian X M . Effects of continuous returning straws to field and shifting different tillage methods on changes of physical-chemical properties of soil and yield components of rice. Chin J Soil Sci, 2011,42:81-85 (in Chinese with English abstract).
[12] 李华兴, 卢维盛, 刘远金, 张新明, 陈喜崇, 李永锋, 霍锦添 . 不同耕作方法对水稻生长和土壤生态的影响. 应用生态学报, 2001,12:553-556.
Li H X, Lu W S, Liu Y J, Zhang X M, Chen X C, Li Y F, Huo J T . Effect of different tillage methods on rice growth and soil ecology. Chin J Appl Ecol, 2001,12:553-556 (in Chinese with English abstract).
[13] 陈达刚, 周新桥, 李丽君, 刘传光, 张旭, 陈友订 . 华南主栽高产籼稻根系形态特征及其与产量构成的关系. 作物学报, 2013,39:1899-1908.
Chen D G, Zhou X Q, Li L J, Liu C G, Zhang X, Chen Y D . Relationship between root morphological characteristics and yield components of major commercial indica rice in South China. Acta Agron Sin, 2013,39:1899-1908 (in Chinese with English abstract).
[14] 谷子寒, 王元元, 帅泽宇, 陈平平, 敖和军, 屠乃美, 易镇邪, 周文新 . 土壤耕作方式对水稻产量形成特性的影响初探. 作物研究, 2017,31:103-109.
Gu Z H, Wang Y Y, Shuai Z Y, Chen P P, Ao H J, Tu N M, Yi Z X, Zhou W X . Preliminary study about the effects of soil tillage ways on the yield formation characteristics of rice. Crop Res, 2017,31:103-109 (in Chinese with English abstract).
[15] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-260.
Li H S. Principles and Techniques of Plant Physiology and Biochemistry Experiments. Beijing: Higher Education Press, 2000. pp 164-260(in Chinese).
[16] 吴建富, 曾研华, 赵新帆, 范呈根, 潘晓华, 石庆华 . 耕作方式对双季机插水稻产量和土壤理化性质的影响. 湖南农业大学学报(自然科学版), 2017,43:581-585.
Wu J F, Zeng Y H, Zhao X H, Fan C G, Pan X H, Shi Q H . Effects of tillage methods on yield of double cropping rice with machine-transplanted and soil physical-chemical properties. J Hunan Agric Univ ( Nat Sci), 2017,43:581-585 (in Chinese with English abstract).
[17] Xu Y, Nie L, Buresh R J, Huang J L, Cui K H . Agronomic performance of late-season rice under different tillage, straw, and nitrogen management. Field Crops Res, 2010,115:79-84.
doi: 10.1016/j.fcr.2009.10.005
[18] 黄小洋, 漆映雪, 黄国勤, 张兆飞, 刘隆旺, 章秀福, 高旺盛 . 稻田保护性耕作研究I: 免耕对水稻产量、生长动态及害虫数量的影响. 江西农业大学学报, 2005,27:530-534.
Huang X Y, Qi Y X, Huang G Q, Zhang Z F, Liu L W, Zhang X F, Gao W S . Studies on paddy field conservation tillage: I. Effects of paddy field conservation tillage on rice yield, growth dynamics and pest quantity. Acta Agric Univ Jiangxiensis, 2005,27:530-534 (in Chinese with English abstract).
[19] 李继明, 黄庆海, 袁天佑, 曹金华, 余喜初 . 长期施用绿肥对红壤稻田水稻产量和土壤养分的影响. 植物营养与肥料学报, 2011,17:563-570.
Li J M, Huang Q H, Yuan T Y, Cao J H, Yu X C . Effects of long-term green manure application on rice yield and soil nutrients in paddy soil. Plant Nutr Fert Sci, 2011,17:563-570 (in Chinese with English abstract).
[20] 黄国勤, 杨滨娟, 王淑彬, 黄小洋, 张兆飞, 姚珍, 黄禄星, 赵其国 . 稻田实行保护性耕作对水稻产量、土壤理化及生物学性状的影响. 生态学报, 2015,35:1225-1234.
Huang G Q, Yang B J, Wang S B, Huang X Y, Zhang Z F, Yao Z, Huang L X, Zhao Q G . Effects of 8 years of conservational tillage on rice yield and soil physical, chemical and biological properties. Acta Ecol Sin, 2015,35:1225-1234 (in Chinese with English abstract).
[21] 关欣, 陈温福, 殷红, 李振兴, 吕香玲 . 不同年代水稻品种齐穗后叶片保护酶活性及膜脂过氧化作用比较分析. 沈阳农业大学学报, 2003,34:351-354.
Guan X, Chen W F, Yin H, Li Z X, Lyu X L . Comparison on the protective enzyme activities and lipid peroxidation after full heading stage among rice varieties developed in different years. J Shenyang Agric Univ, 2003,34:351-354 (in Chinese with English abstract).
[22] Baily C, Benamar A, Corbineau F, Come D . Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol Plant, 1996,97:104-110.
doi: 10.1111/ppl.1996.97.issue-1
[23] 兰全美, 张锡洲, 李廷轩 . 水旱轮作条件下免耕土壤主要理化特性研究. 水土保持学报, 2009,23(1):145-149.
Lan Q M, Zhang X Z, Li T X . Study on main physicochemical properties in no-tillage soil under paddy-upland rotation. J Soil Water Conserv, 2009,23(1):145-149 (in Chinese with English abstract).
[24] 刘武仁, 陈砚, 郑金玉, 罗洋, 郑洪兵, 李伟堂 . 不同耕作方式对玉米产量及叶片某些生理机制的影响. 玉米科学, 2009,17(2):112-115.
Liu W R, Chen Y, Zheng J Y, Luo Y, Zheng H B, Li W T . Studies on comparison of yield and some physiological traits of maize leaves under different tillage methods. J Maize Sci, 2009,17(2):112-115 (in Chinese with English abstract).
[25] 孟庆阳, 王永华, 靳海洋, 晁岳恩, 段剑钊, 郭天财 . 耕作方式与秸秆还田对沙姜黑土土壤酶活性及冬小麦产量的影响. 麦类作物学报, 2016,36:341-346.
Meng Q Y, Wang Y H, Jin H Y, Chao Y E, Duan J Z, Guo T C . Effect of tillage and straw returning on soil enzyme activity and yield of winter wheat in lime concretion black soil. J Triticeae Crops, 2016,36:341-346 (in Chinese with English abstract).
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[6] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[7] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[13] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[14] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[15] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!