作物学报 ›› 2020, Vol. 46 ›› Issue (5): 680-689.doi: 10.3724/SP.J.1006.2020.94096
张卫娜,范艳玲,康益晨,杨昕宇,石铭福,要凯,赵章平,张俊莲,秦舒浩()
Wei-Na ZHANG,Yan-Ling FAN,Yi-Chen KANG,Xin-Yu YANG,Ming-Fu SHI,Kai YAO,Zhang-Ping ZHAO,Jun-Lian ZHANG,Shu-Hao QIN()
摘要:
富含半胱氨酸的类受体激酶(cysteine-rich receptor-like kinase, CRK)在植物生长发育和环境适应过程中发挥重要的作用。本研究鉴定了马铃薯CRK (StCRK)家族成员, 并对其理化性状、进化特征、亚细胞定位、染色体位置和表达模式进行分析。鉴定获得8个StCRKs, 其氨基酸序列大小为459~686 aa, 分子量介于50.75~77.50 kD, 等电点介于5.84~8.75, 主要位于质膜。进化分析将来自马铃薯、拟南芥、香蕉、苹果、水稻、番茄和棉花的CRKs分为9个亚组, 2号、3号和5号染色体上的StCRKs分布于亚组I (6个成员)和VI (2个成员); 存在2个串联重复基因簇, 包含4个成员。StCRKs启动子区域存在多种顺式调控元件, 主要响应激素、低温、防卫和逆境等信号。接种晚疫病菌(Phytophthora infestans, Pi)和干腐病菌(Fusarium sulphureum, Fs)后, 分别发现8个和6个StCRKs为差异表达。其中, StCRK4和StCRK8响应Pi和Fs信号, 在接种以上2种病原菌后, 表达量上调8倍以上, 推测其响应多个真菌信号, 可能在马铃薯对真菌病害的广谱抗性中起重要作用, 可作为进一步抗病研究和功能分析的候选基因。
[1] |
Sakamoto T, Deguchi M, Brustolini O J, Santos A A, Silva F F, Fontes E P . The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol, 2012,12:229.
doi: 10.1186/1471-2229-12-229 pmid: 23198823 |
[2] |
Walker J C, Zhang R . Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990,345:743-746.
doi: 10.1038/345743a0 pmid: 2163028 |
[3] |
Shiu S H, Bleecker A B . Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 2001,98:10763-10768.
doi: 10.1073/pnas.181141598 pmid: 11526204 |
[4] |
Shiu S H, Karlowski W M, Pan R, Tzeng Y, Mayer K F, Li W . Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 2004,16:1220-1234.
doi: 10.1105/tpc.020834 pmid: 15105442 |
[5] | Lehti-Shiu M D, Zhou C, Shiu S H . Origin, diversity, expansion history, and functional evolution of the plant receptor-like kinase/pelle family. In: Receptor-like kinases in plants. Berlin Heidelberg: Springer, 2012. pp 1-22. |
[6] |
Walker J C . Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol, 1994,26:1599-1609.
doi: 10.1007/bf00016492 pmid: 7858206 |
[7] |
Wang G, Ellendorff U, Kemp B, Mansfield J W, Forsyth A, Mitchell K, Bastas K K, Liu C, Woodstor A, Zipfel C, De Wit P J G M, Jones J D G, Tor M, Thomma B P . A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol, 2008,147:503-517.
doi: 10.1104/pp.108.119487 pmid: 18434605 |
[8] |
Chen Z . A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol, 2001,126:473-476.
doi: 10.1104/pp.126.2.473 pmid: 11402176 |
[9] |
Wrzaczek M, Brosche M, Salojarvi J, Kangasjarvi S, Idanheimo N, Mersmann S, Robatzek S, Karpinski S, Karpinska B, Kangasjarvi J . Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol, 2010,10:95.
doi: 10.1186/1471-2229-10-95 pmid: 20500828 |
[10] |
张中起, 王娇, 靳炜, 葛冬冬, 刘康, 吕芬妮, 孙敬 . 陆地棉CRK基因家族的鉴定及其表达分析. 中国农业科学, 2018,51:2442-2461.
doi: 10.3864/j.issn.0578-1752.2018.13.002 |
Zhang Z Q, Wang J, Jin W, Ge D D, Liu K, Lyu F N, Sun J . Identification and expression analysis of CRK gene family in upland cotton. Sci Agric Sin, 2018,51:2442-2461 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.13.002 |
|
[11] |
Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojarvi J, Rayapuram C, Idanheimo N, Hunter K, Kimura S, Merilo E, Vaattovaara A, Oracz K, Kaufholdt D, Pallon A, Anggoro D T, Glow D, Lowe J, Zhou J, Mohammadi O, Puukko T, Albert A, Lang H, Ernst D, Kollist H, Brosche M, Durner J, Borst J W, Collinge D B, Karpinski S, Lyngkjaer M F, Robatzek S, Wrzaczek M, Kangasjarvi J . Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. PLoS Genet, 2015,11:e1005373.
doi: 10.1371/journal.pgen.1005373 pmid: 26197346 |
[12] |
Xu X, Yu T, Xu R, Shi Y, Lin X, Xu Q, Qi X, Weng Y, Chen, X, . Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet, 2016,129:507-516.
doi: 10.1007/s00122-015-2644-4 pmid: 26660669 |
[13] |
Yeh Y, Chang Y, Huang P, Huang J, Zimmerli L . Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front Plant Sci, 2015,6:322.
doi: 10.3389/fpls.2015.00322 pmid: 26029224 |
[14] |
Lee D S, Kim Y C, Kwon S J, Ryu C, Park O K . The Arabidopsis cysteine-rich receptor-like kinase CRK36 regulates immunity through interaction with the cytoplasmic kinase BIK1. Front Plant Sci, 2017,8:1856.
doi: 10.3389/fpls.2017.01856 pmid: 29163585 |
[15] |
Chen K, Fan B, Du L, Chen Z . Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Mol Biol, 2004,56:271-283.
doi: 10.1007/s11103-004-3381-2 pmid: 15604743 |
[16] |
Acharya B R, Raina S, Maqbool S B, Jagadeeswaran G, Mosher S, Appel H M, Schultz J C, Klessig D F, Raina R . Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J, 2007,50:488-499.
doi: 10.1111/j.1365-313X.2007.03064.x pmid: 17419849 |
[17] |
Chen K, Du L, Chen Z . Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol, 2003,53:61-74.
doi: 10.1023/B:PLAN.0000009265.72567.58 |
[18] |
Ederli L, Madeo L, Calderini O, Gehring C, Moretti C, Buonaurio R, Paolocci F, Pasqualini S . The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. J Plant Physiol, 2011,168:1784-1794.
doi: 10.1016/j.jplph.2011.05.018 |
[19] |
Chern M, Xu Q, Bart R, Bai W, Ruan D, Szeto W H, Canlas P E, Jain R, Chen X, Ronald P C . A genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity. PLoS Genet, 2016,12:e1006049.
doi: 10.1371/journal.pgen.1006049 pmid: 27176732 |
[20] |
Rayapuram C, Jensen M K, Maiser F, Shanir J V, Hornshoj H, Rung J H, Gregersen P, Schweizer P, Collinge D B, Lyngkjaer M F . Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Mol Plant Pathol, 2012,13:135-147.
doi: 10.1111/j.1364-3703.2011.00736.x pmid: 21819533 |
[21] |
Liu R H, Meng J L . MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas, 2003,25:317-321.
pmid: 15639879 |
[22] |
Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G . The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997,25:4876-4882.
doi: 10.1093/nar/25.24.4876 pmid: 9396791 |
[23] | 蒋锐 . 马铃薯晚疫病广谱抗性QTL dPI09c的精细定位及抗性基因克隆. 华中农业大学博士学位论文, 湖北武汉, 2017. |
Jiang R . Fine Mapping,Cloning and Function Dissection of the Gene Conferring Durable Late Blight Resistance of QTL dPI09c in Potato. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei,China, 2017 (in Chinese with English abstract). | |
[24] | 巩檑, 甘晓燕, 张丽, 陈虞超, 聂峰杰, 石磊, 郭志乾, 宋玉霞 . 马铃薯StNAC72基因克隆及表达分析. 分子植物育种, 2016,14:2589-2595. |
Gong L, Gan X Y, Zhang L, Chen Y C, Nie F J, Shi L, Guo Z Q, Song Y X . Cloning and function analysis of the StNAC72 gene from potato ( Solanum tuberosum). Mol Plant Breed, 2016,14:2589-2595 (in Chinese with English abstract). | |
[25] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[26] |
Miyakawa T, Miyazono K, Sawano Y, Hatano K, Tanokura M . Crystal structure of ginkbilobin-2 with homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Proteins, 2009,77:247-251.
doi: 10.1002/prot.22494 pmid: 19603485 |
[27] |
Xu G, Guo C, Shan H, Kong H . Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012,109:1187-1192.
doi: 10.1073/pnas.1109047109 pmid: 22232673 |
[28] |
Xu W R, Yu Y H, Ding J H, Hua Z Y, Wang Y J . Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta, 2010,231:475-487.
doi: 10.1007/s00425-009-1062-8 pmid: 19937257 |
[29] |
Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich I E . Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J, 1996,15:5690-5700.
pmid: 8896462 |
[30] |
Diazdeleon F, Klotz K L, Lagrimini L M . Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol, 1993,101:1117-1118.
doi: 10.1104/pp.101.3.1117 pmid: 8310051 |
[31] |
Urao T, Yamaguchishinozaki K, Urao S, Shinozaki K . An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993,5:1529-1539.
doi: 10.1105/tpc.5.11.1529 pmid: 8312738 |
[32] |
Yamaguchishinozaki K, Shinozaki K . Arabidopsis DNA encoding two desiccation-responsive rd29 genes. Plant Physiol, 1993,101:1119-1120.
doi: 10.1104/pp.101.3.1119 pmid: 8310052 |
[33] | White A J, Dunn M A, Brown K, Hughes M A . Comparative analysis of genomic sequence and expression of a lipid transfer protein gene family in winter barley. J Exp Bot, 1994,45:1885-1892. |
[34] | Vidhyasekaran P . Plant hormone signaling systems in plant innate immunity. Dordrecht: Springer, 2015. pp 1-458. |
[1] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[2] | 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213. |
[3] | 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能 分析[J]. 作物学报, 2018, 44(7): 1021-1031. |
[4] | 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801. |
[5] | 苏亚春,黄珑,凌辉,王竹青,刘峰,苏炜华,黄宁,吴期滨,高世武,阙友雄. 甘蔗CDK基因的cDNA全长克隆与表达分析[J]. 作物学报, 2017, 43(01): 42-50. |
[6] | 刘芳,刘睿洋,彭烨,官春云. 甘蓝型油菜BnFAD2-C1基因全长序列的克隆、表达及转录调控元件分析[J]. 作物学报, 2015, 41(11): 1663-1670. |
[7] | 朱晓玲,陈海峰,王程,郝青南,陈李淼,郭丹丹,伍宝朵,陈水莲,沙爱华,周蓉,周新安. 大豆钾转运体基因GmKT12的克隆和信息学分析[J]. 作物学报, 2013, 39(09): 1701-1709. |
[8] | 吴娟娟, 吴倩, 喻德跃. 大豆丙二烯氧化物合酶基因(GmAOS)及其启动子的克隆与分析[J]. 作物学报, 2011, 37(02): 216-223. |
|