欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 638-649.doi: 10.3724/SP.J.1006.2021.04139

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定

贾小平1,*(), 李剑峰1, 张博1, 全建章2, 王永芳2, 赵渊1, 张小梅1, 王振山1, 桑璐曼1, 董志平2,*()   

  1. 1河南科技大学农学院, 河南洛阳 471023
    2河北省农林科学院谷子研究所 / 国家谷子改良中心, 河北石家庄 050035
  • 收稿日期:2020-06-25 接受日期:2020-10-14 出版日期:2021-04-12 网络出版日期:2020-11-20
  • 通讯作者: 贾小平,董志平
  • 基金资助:
    国家自然科学基金项目(31471569)

Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.)

JIA Xiao-Ping1,*(), LI Jian-Feng1, ZHANG Bo1, QUAN Jian-Zhang2, WANG Yong-Fang2, ZHAO Yuan1, ZHANG Xiao-Mei1, WANG Zhen-Shan1, SANG Lu-Man1, DONG Zhi-Ping2,*()   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
    2Institute of Millet, Hebei Academy of Agriculture and Forestry Sciences / National Millet Improvement Center, Shijiazhuang 050035, Hebei, China
  • Received:2020-06-25 Accepted:2020-10-14 Published:2021-04-12 Published online:2020-11-20
  • Contact: JIA Xiao-Ping,DONG Zhi-Ping
  • Supported by:
    National Natural Science Foundation of China(31471569)

摘要:

从谷子品种延谷11号克隆生物钟基因SiPRR37, 通过生物信息学分析、组织特异性表达分析、4种不同光温组合条件的昼夜表达模式分析以及对NaCl、ABA、PEG、低温、Fe 5种非生物胁迫的响应特点分析, 揭示SiPRR37参与谷子光温互作调控以及应对非生物胁迫的作用机制; 并对160份谷子材料重测序检测SiPRR37基因的突变位点进行单倍型分析, 探究该基因对谷子主要农艺性状的影响。结果表明, SiPRR37基因蛋白质编码区(sequence coding for amino acids in protein, CDS)全长2247 bp, 编码748个氨基酸, 含有REC和CCT 2个结构域, 基于PRR37蛋白的系统进化分析发现, 谷子与糜子、高粱、玉米亲缘关系最近; 启动子预测分析发现, SiPRR37启动子区存在光、温、生长素、赤霉素、脱落酸、茉莉酸甲酯、干旱和盐胁迫等多种应答元件。SiPRR37相对表达量从高到低依次为根、穗颈、穗、顶叶、次顶叶、茎秆; 4个光温组合条件SiPRR37均只在光照期出现1个表达峰, 无论高温(27℃)还是低温(22℃), 短日照相比长日照表达峰均要提前, 无论长日照还是短日照, 低温(22℃)相比高温(27℃)表达峰均要提前; NaCl、低温(15℃)胁迫能够抑制SiPRR37表达, PEG模拟干旱胁迫和Fe胁迫能够诱导SiPRR37基因表达, SiPRR37参与了ABA信号传导过程。位于SiPRR37 CDS区的10个SNP将160份谷子材料分为19个单倍型, 其中3个单倍型(Hap_7、Hap_10、Hap_19)是改善穗部性状的有利单倍型。谷子SiPRR37基因表达具有昼夜节律性, 同时受光周期和温度调控, 并且参与了谷子对盐胁迫、低温胁迫、干旱胁迫和铁胁迫的应答反应, 同时SiPRR37与抽穗期和多个穗部性状相关, 在开展谷子高产分子辅助选育中具有一定应用潜力。

关键词: 谷子, SiPRR37, 光温组合, 非生物胁迫, 表达分析, 单倍型

Abstract:

In this study, the clock gene SiPRR37 was cloned from the foxtail millet variety Yangu 11, and bioinformatics analysis, tissue specific expression analysis, diurnal expression patterns analysis under four different photo-thermal combinational conditions and responsive characteristics analysis to five abiotic stresses such as NaCl, ABA, PEG, low temperature and Fe were performed to reveal the mechanisms that SiPRR37 participated in regulating of photo-thermal interaction and coped with abiotic stresses. Mutation sites of SiPRR37 were detected by re-sequencing of 160 millet materials, which were used for haplotype analysis to explore the effect of SiPRR37 on main agronomic traits. The results showed that the CDS length of SiPRR37 gene was 2247 bp, which encoded 748 amino acids and contained REC and CCT domains. The phylogenetic analysis based on PRR37 proteins showed that foxtail millet had the closest relationship with broomcorn millet, sorghum and maize. Promoter prediction analysis found that various responsive elements to light, temperature, auxin, GA, ABA, MeJA, drought and salt stresses were detected in promoter region of SiPRR37. The decreasing order of relative expression level of SiPRR37 was root, panicle neck, panicle, parietal leaf, secondary parietal leaf and stem. Under four photo-thermal combinational conditions, SiPRR37 gave only one expression peak during the light period, and regardless of high temperature (27℃) or low temperature (22℃), the expression peak advanced under short-day condition compared to long-day condition, regardless of long-day or short-day, the expression peak advanced at low temperature (22℃) compared to high temperature (27℃). The expression of SiPRR37 was inhibited by NaCl and low temperature (15℃) stresses, induced by PEG-simulated drought stress and Fe stress. SiPRR37 participated in ABA signaling transduction process. The 10 SNPs in CDS region of SiPRR37 divided 160 millet materials into 19 haplotypes, of which Hap_7, Hap_10 and Hap_19 were favorable haplotypes for improving panicle traits. SiPRR37 exhibited circadian expression, and was regulated by photoperiod and temperature simultaneously. SiPRR37 participated in the responses of foxtail millet to salt stress, low temperature stress, drought stress and Fe stress. At the same time, SiPRR37 was correlated with heading stage and multiple panicle traits, showing certain application potential in high-yield molecular-assisted breeding of foxtail millet.

Key words: foxtail millet, SiPRR37, photo-thermal combinations, abiotic stress, expression analysis, haplotype

附表1

本研究所用的160份谷子资源"

序号
Serial number
国家统一编号
National unified number
品种名
Variety name
来源地
Origin region
1 00027956 郑谷2 Zhenggu 2 中国河南 Henan, China
2 00027954 豫谷6 Yugu 6 中国河南 Henan, China
3 00024231 郑06-6 Zheng 06-6 中国河南 Henan, China
4 00024221 豫谷3 Yugu3 中国河南 Henan, China
5 00027933 郑05-2 Zheng 05-2 中国河南 Henan, China
6 00024226 郑州12 Zhengzhou 12 中国河南 Henan, China
7 00024231 郑315 Zheng 315 中国河南 Henan, China
8 00024262 郑8041 Zheng 8041 中国河南 Henan, China
9 00024195 安5424 An 5424 中国河南 Henan, China
10 00027946 豫谷15 Yugu 15 中国河南 Henan, China
11 00027948 豫谷11 Yugu 11 中国河南 Henan, China
12 00028386 豫谷16 Yugu 16 中国河南 Henan, China
13 00027937 安4117 An 4117 中国河南 Henan, China
14 00027952 豫谷13号Yugu 13 中国河南 Henan, China
15 00028387 豫谷18号Yugu 18 中国河南 Henan, China
16 00027937 安04-5014 An 04-5014 中国河南Henan, China
17 00024170 豫谷2号Yugu2 中国河南 Henan, China
18 00010182 十里香Shilixiang 中国河南 Henan, China
19 00007844 毛毛亮Maomaoliang 中国河南 Henan, China
20 00020503 大黄糯谷Dahuangnuogu 中国河南 Henan, China
21 00027920 冀谷27 Jigu 27 中国河北 Hebei, China
22 00027921 冀谷28 Jigu 28 中国河北 Hebei, China
23 00027925 冀谷17 Jigu 17 中国河北 Hebei, China
24 00027919 金谷1号Jingu 1 中国河北 Hebei, China
25 冀特5号Jite 5 中国河北 Hebei, China
26 00027910 冀谷24 Jigu 24 中国河北 Hebei, China
27 00027909 冀谷22 Jigu 22 中国河北 Hebei, China
28 00027907 冀谷18 Jigu 18 中国河北 Hebei, China
29 00027906 冀谷31 Jigu 31 中国河北 Hebei, China
30 00027905 复12 Fu 12 中国河北 Hebei, China
31 00027924 冀谷15 Jigu 15 中国河北 Hebei, China
32 00027912 冀谷29 Jigu 29 中国河北 Hebei, China
33 00027911 冀谷26 Jigu 26 中国河北 Hebei, China
34 00027922 冀谷30 Jigu 30 中国河北 Hebei, China
35 00027733 谷丰1号Gufeng 1 中国河北 Hebei, China
36 532
37 00007619 张农8 Zhangnong 8 中国河北 Hebei, China
38 00022106 坝谷6 Bagu 6 中国河北 Hebei, China
39 00022109 坝谷81 Bagu 81 中国河北 Hebei, China
40 00022123 坝谷210 Bagu 210 中国河北 Hebei, China
41 00022173 坝91-0130 Ba 91-0130 中国河北 Hebei, China
42 00022116 坝谷139 Bagu 139 中国河北 Hebei, China
43 00022162 坝91-0053 Ba 91-0053 中国河北 Hebei, China
44 00022166 坝91-0079 Ba 91-0079 中国河北 Hebei, China
45 00007036 毛毛谷Maomaogu 中国河北 Hebei, China
46 00007040 沙粒滚Shaligun 中国河北 Hebei, China
47 00019241 大九根齐Dajiugenqi 中国河北 Hebei, China
48 00022090 矮41 Ai 41 中国河北 Hebei, China
49 000027926 衡谷9号Henggu 9 中国河北 Hebei, China
50 00022052 毛谷2号Maogu 2 中国河北 Hebei, China
51 00022608 南育3号Nanyu 3 中国河北 Hebei, China
52 00027898 承谷11 Chenggu 11 中国河北 Hebei, China
53 00028046 矮88 Ai 88 中国河北 Hebei, China
54 00012329 小青谷Xiaoqinggu 中国河北 Hebei, China
55 00012587 黄毛谷Huangmaogu 中国河北 Hebei, China
56 00022881 齐头白Qitoubai 中国河北 Hebei, China
57 00022525 老绳头Laoshengtou 中国河北 Hebei, China
58 00008960 龙爪谷Longzhuagu 中国河北 Hebei, China
59 00008461 小白苗Xiaobaimiao 中国河北 Hebei, China
60 00007568 黑色腰Heiseyao 中国河北 Hebei, China
61 00024082 济叶冲4 Jiyechong 4 中国山东Shandong, China
62 00019597 鲁谷3号Lugu 3 中国山东Shandong, China
63 00023553 早白糯Zaobainuo 中国山东Shandong, China
64 00012887 钱串子Qianchuanzi 中国山东Shandong, China
65 00014233 拔谷Bagu 中国山东Shandong, China
66 00012877 红根子谷Honggenzigu 中国山东Shandong, China
67 00011078 早谷Zaogu 中国山东Shandong, China
68 00006337 晋汾13 Jinfen 13 中国山西Shanxi, China
69 00027993 晋谷35号Jingu 35 中国山西Shanxi, China
70 00027995 汾选5号Fenxuan 5 中国山西Shanxi, China
71 00018008 皇龙谷Huanglonggu 中国山西Shanxi, China
72 00017042 红腿谷Hongtuigu 中国山西Shanxi, China
73 00024502 大同黄Datonghuang 中国山西Shanxi, China
74 00020590 龙谷26 Longgu 26 中国黑龙江Heilongjiang, China
75 00027854 白谷9号Baigu 9 中国吉林Jilin, China
76 00027862 公谷66号Gonggu 66 中国吉林Jilin, China
77 00027699 公谷69号Gonggu 69 中国吉林Jilin, China
78 00027704 公矮3号Gong’ai 3 中国吉林Jilin, China
79 00000785 白杆白沙Baiganbaisha 中国吉林Jilin, China
80 00000077 糟皮一把奇Zaopiyibaqi 中国黑龙江Heilongjiang, China
81 00015441 龙爪粘Longzhuanian 中国黑龙江Heilongjiang, China
82 00015445 安丰Anfeng 中国黑龙江Heilongjiang, China
83 00000011 老来变Laolaibian 中国黑龙江Heilongjiang, China
84 00027903 06-766 中国北京 Beijing, China
85 00012037 小早谷Xiaozaogu 中国北京Beijing, China
86 00018398 红杆谷Honggangu 中国陕西Shaanxi, China
87 00026203 呼和浩特大毛谷Huhehaotedamaogu 中国陕西Shaanxi, China
88 00028011 延谷11号Yangu 11 中国陕西Shaanxi, China
89 11郄1071 11qie1071
90 00014610 米泉谷Miquangu 中国新疆Xinjiang, China
91 00014612 沙湾谷子Shawanguzi 中国新疆Xinjiang, China
92 00018817 谷子Guzi 中国新疆Xinjiang, China
93 00018811 谷子Guzi 中国新疆Xinjiang, China
94 00021709 谷上谷Gushanggu 中国甘肃 Gansu, China
95 00028014 陇谷11号Longgu 11 中国甘肃Gansu, China
96 00027972 塞外香谷子Saiwaixiangguzi 中国宁夏Ningxia, China
97 00021671 红燃谷Hongrangu 中国宁夏Ningxia, China
98 00018751 小苗谷Xiaomiaogu 中国宁夏Ningxia, China
99 00003251 大青苗鱼刺Daqingmiaoyuci 中国甘肃Gansu, China
100 00018675 尕红谷Gahonggu 中国甘肃Gansu, China
101 00002910 黄玉3 Huangyu 3 中国内蒙古 Inner Mongolia, China
102 00003005 籼紫灰谷Xianzihuigu 中国内蒙古Inner Mongolia, China
103 00003008 二白谷Erbaigu 中国内蒙古Inner Mongolia, China
104 00022053 蒜皮白Suanpibai 中国内蒙古Inner Mongolia, China
105 00015547 金香玉Jinxiangyu 中国内蒙古Inner Mongolia, China
106 00014740 朝鲜谷子Chaoxianguzi 朝鲜Korea
107 00015037 SET3/80 德国Germany
108 00015049 ISE-430 美国 America
109 00014718 大王国Dawangguo 日本Japan
110 00014938 ISE-245 印度 India
111 00015012 法谷28-81 Fagu 28-81 法国 France
112 00014729 骨绿早1 Gulyuzao 1 朝鲜DPRK
113 00022367 ISE 770 国际半干旱研究所ICRISAT
114 00022370 ISE 775 国际半干旱研究所ICRISAT
115 00014697 岛原Daoyuan 日本Japan
116 00014706 六十日Liushiri 日本Japan
117 00015402 金德Jinde 美国America
118 00022430 Red manna 南非South Africa
119 00026837 K-3606 俄罗斯Russia
120 00014949 Ise-455 美国America
121 00015029 Set 64/82 德国Germany
122 00027931 8322-14
123 00027915 白米1号Baimi 1 中国辽宁 Liaoning, China
124 00027927 2013
125 0027917 谷丰2号Gufeng 2 中国河北Hebei, China
126 00015128 芝麻粟Zhimasu
127 00014623 大头糯Datounuo 中国湖南 Hunan, China
128 00022285 乐山白糯Leshanbainuo 中国四川 Sichuan, China
129 00022313 黄谷Huanggu 中国西藏 Tibet, China
130 00026488 黄粟Huangsu 中国广西 Guangxi, China
131 00025646 黄谷子Huangguzi 中国青海Qinghai, China
132 00025962 喇叭黄Labahuang 中国青海Qinghai, China
133 15HN-206 中国河北Hebei, China
134 15HN-138 中国河北Hebei, China
135 15HN-79 中国河北Hebei, China
136 六十天还家 Liushitianhuanjia 中国吉林Jilin, China
137 谷子Guzi 中国青海Qinghai, China
138 红糯谷Hongnuogu 中国宁夏Ningxia, China
139 小明谷子Xiaomingguzi 中国甘肃Gansu, China
140 粘子糯Nianzinuo
141 毛粟Maosu
142 00018651 茄谷Qiegu 中国甘肃Gansu, China
143 然谷Rangu 中国陕西Shaanxi, China
144 铁谷4号Tiegu 4 中国辽宁 Liaoning, China
145 红苗2 Hongmiao 2 中国吉林Jilin, China
146 叩根Kougen 中国吉林Jilin, China
147 00021176 铁7924 Tie 7924 中国辽宁 Liaoning, China
148 00020837 小金苗Xiaojinmiao 中国吉林Jilin, China
149 00015437 嫩选十号Nenxuanshi 中国黑龙江Heilongjiang, China
150 00028013 陇谷10号Longgu 10 中国甘肃Gansu, China
151 00027871 辽谷1号Liaogu 1 中国辽宁 Liaoning, China
152 00027852 嫩选十六Nenxuanshiliu 中国黑龙江Heilongjiang, China
153 00027882 蒙早谷9号Mengzaogu 9 中国内蒙古Inner Mongolia, China
154 红钙谷Honggaigu 中国天津Tianjin, China
155 00007028 黑谷子Heiguzi 中国河北Hebei, China
156 00021303 赤谷6号Chigu 6 中国内蒙古Inner Mongolia, China
157 二不黄Erbuhuang 中国山西Shanxi, China
158 白罗砂Bailuosha 中国河北Hebei, China
159 竹叶青Zhuyeqing 中国河北Hebei, China
160 压塌车Yatache 中国河北Hebei, China

表1

特异性引物"

引物名称
Primer name
引物序列
Primer sequences (5°-3°)
预期片段大小
Expected fragment size (bp)
用途
Purpose
PRR37-1 F: TGACAACGACGAGGACG
R: CGTTAGCAATCTCCGTGT
1295 克隆SiPRR37
Cloning SiPRR37
PRR37-2 F: CCATTTGCTGACTCGCCTAC
R: TCCTGTCCCGCCTTGAT
1586
PRR37-3 F: AAGGCTCCAATGGCAGTAG
R: GAACCAGCGAAGGAAGAATC
1267
SiActin F: GGCAAACAGGGAGAAGATGA
R: GAGGTTGTCGGTAAGGTCACG
229 内参荧光定量
Internal reference fluorescence quantification
RtPRR37 F: CACCACTTTCGTCTACCTCTT
R: CTGGCATCTCTTCTAACGG
91 SiPRR37荧光定量
SiPRR37 fluorescence quantification

图1

延谷11号叶片总RNA电泳结果 1, 2: 提取的两管RNA。"

图2

SiPRR37基因的RT-PCR产物电泳结果 M: marker DL2000; A: PRR37-1, PRR37-2扩增产物; B: PRR37-3扩增产物。"

附图1

谷子 SiPRR37 基因的核苷酸序列及其编码的氨基酸序列 下画线部分为起始密码子和终止密码子。"

图3

谷子SiPRR37蛋白的结构域分析"

附图2

谷子SiPRR37 蛋白磷酸化位点分析"

图4

PRR37蛋白的分子系统进化树"

图5

SiPRR37基因的组织特异性表达分析 柱上不同大小写字母分别表示在0.01和0.05水平差异显著。"

表2

SiPRR37启动子区顺式作用元件分析"

调控元件
Regulatory element
核心序列
Core sequence
数目
Number
分布区域
Distribution region (bp)
功能
Function
LTR CCGAAA 1 658-663 参与低温响应顺式激活元件
cis-acting element involved in low-temperature responsiveness
G-box CACGTG, TCCACATGGCA, CACGAC 4 123-128, 1870-1879, 1103-1108, 1517-1522 参与光响应顺式作用元件
cis-acting regulatory element involved in light responsiveness
AE-box AGAAACTT 1 409-416 部分光响应元件 Part of a light responsive element
Box II CCACGTGGC 1 122-130 部分光响应元件 Part of a light responsive element
Sp1 GGGCGG 1 23-28 光响应元件 Light responsive element
3-AF1 binding site TAAGAGAGGAA 1 1045-1054 光响应元件 Light responsive element
AuxRR-core GGTCCAT 1 1536-1542 参与生长素响应顺式作用元件
cis-acting regulatory element involved in auxin responsiveness
TGACG-motif TGACG, CGTCA 2 29-33, 1563-1567 参与茉莉酸甲酯响应的顺式激活元件
cis-acting regulatory element involved in the MeJA-
responsiveness
TATC-box TATCCCA 1 925-931 参与赤霉素响应顺式激活元件
cis-acting element involved in gibberellin-responsiveness
P-box CCTTTTG 1 1726-1732 赤霉素响应元件 Gibberellin-responsive element
Myb-binding site CAACAG 1 1154-1159 参与干旱、盐胁迫等逆境响应
Involved in drought, salt dresses responsiveness
DRE1 ACCGAGA 1 342-348 干旱胁迫响应元件
ABRE ACGTG, CACGTG 2 31-35, 123-128 参与ABA响应的顺式激活元件
cis-acting element involved in the abscisic acid responsiveness

图6

不同光温组合处理SiPRR37基因表达特性 A: 低温条件不同光周期对SiPRR37基因的影响; B: 短日照条件不同温度对SiPRR37基因的影响; C: 长日照条件不同温度对SiPRR37基因的影响; D: 高温条件不同光周期对SiPRR37基因的影响。长日照: 6:00-21:00光照, 0:00-6:00和21:00-0:00为黑暗; 短日照: 6:00-15:00光照, 0:00-6:00和15:00-0:00为黑暗。LTSD: 低温短日照; LTLD: 低温长日照; HTSD: 高温短日照; HTLD: 高温长日照。柱上不同大小写字母分别表示在0.01和0.05水平差异显著。"

图7

谷子SiPRR37基因对非生物胁迫的响应 A: 盐胁迫; B: ABA渗透胁迫; C: PEG模拟干旱胁迫; D: 低温胁迫; E: 铁胁迫。柱上不同大小写字母分别表示在0.01和0.05水平差异显著。"

表3

SiPRR37基因在160份谷子材料中检测到的SNP位点"

参数
Parameter
5°非翻译区
5° UTR
外显子区
Exon region
内含子区
Intron region
3°非翻译区
3° UTR
全长
Full length
序列长度Sequence length (bp) 978 2247 10,440 678 14,343
SNP数目 Number of SNPs 6 10 31 0 47
SNP频率SNP frequency (bp SNP-1) 163 224.7 336.77 0 305.17

附表2

SiPRR37基因编码区序列的单倍型在160份谷子品种中的分布"

单倍型
Haplotype
个数
Number
品种
Variety
Hap_1 84 郑谷2, 豫谷6, 郑06-6, 郑05-2, 郑州12, 郑315, 安5424, 豫谷11, 豫谷16, 安4117, 豫谷13号, 安04-5014,大黄糯谷, 冀谷27, 冀谷28, 冀谷17, 金谷1号, 冀谷24, 冀谷22, 冀谷18, 冀谷31, 复12, 冀谷15, 冀谷29号, 冀谷26号, 冀谷30, 谷丰1号, 532, 坝91-0130, 坝91-0053, 大九根齐, 矮41, 衡谷9号, 南育3号, 承谷11, 矮88, 黄毛谷, 齐头白, 老绳头, 济叶冲4, 早白糯, 钱串子, 拔谷, 红根子谷, 晋谷35号, 皇龙谷, 龙谷26, 白谷9号, 公谷66号, 公谷69号, 公矮3号, 白杆白沙, 安丰, 老来变, 06-766, 延谷11号, 黄玉3, 金香玉, ISE-430, 大王国, ISE-245, 骨绿早1, ISE775, 岛原, 六十日, 金德, Set64/82, 8322-14, 白米1号, 2013, 芝麻粟, 大头糯, 乐山白糯, 黄谷, 喇叭黄, 15HN-138, 然谷, 红苗2, 铁7924, 小金苗, 嫩选十六, 黑谷子, 赤谷6号, 压塌车
Zhenggu 2, Yugu 6, Zheng 06-6, Zheng 05-2, Zhengzhou 12, Zheng 315, An 5424, Yugu 11, Yugu 16, An 4117, Yugu 13, An 04-5014, Dahuangnuogu, Jigu 27, Jigu 28, Jigu 17, Jingu 1, Jigu 24, Jigu 22, Jigu 18, Jigu 31, Fu 12, Jigu 15, Jigu 29, Jigu 26, Jigu 30, Gufeng 1, 532, Ba 91-0130, Ba 91-0053, Dajiugenqi, Ai 41, Henggu 9, Nanyu 3, Chenggu 11, Ai 88, Huangmaogu, Qitoubai, Laoshengtou, Jiyechong 4, Zaobainuo, Qianchuanzi, Bagu, Honggenzigu, Jingu 35, Huanglonggu, Longgu 26, Baigu 9, Gonggu 66, Gonggu 69, Gong’ai 3, Baiganbaisha, Anfeng, Laolaibian, 06-766, Yangu 11, Huangyu 3, Jinxiangyu, ISE-430, Dawangguo, ISE-245, Gulyzao 1, ISE775, Daoyuan, Liushiri, Jinde, Set64/82, 8322-14, Baimi1, 2013, Zhimasu, Datounuo, Leshanbainuo, Huanggu, Labahuang, 15HN-138, Rangu, Hongmiao 2, Tie7924, Xiaojinmiao, Nenxuanshiliu, Heiguzi, Chigu 6, Yatache
Hap_2 2 豫谷3号, 鲁谷3号 Yugu 3, Lugu 3
Hap_3 1 郑8041 Zheng 8041
Hap_4 1 豫谷15 Yugu 15
Hap_5 2 豫谷18号, 沙粒滚 Yugu 18, Shaligun
Hap_6 48 豫谷2号, 十里香, 坝谷6, 坝谷81, 坝谷210, 坝91-0079, 毛毛谷, 毛谷2号, 小青谷, 龙爪谷, 黑色腰, 早谷,晋汾13, 汾选5号, 红腿谷, 龙爪粘, 红杆谷, 呼和浩特大毛谷, 11郄1071, 米泉谷, 谷上谷, 塞外香谷子, 红燃谷, 小苗谷, 大青苗鱼刺, 尕红谷, 籼紫灰谷, 二白谷, Red manna, Ise-455, 黄粟, 黄谷子, 15HN-206, 15HN-79,六十天还家, 谷子, 红糯谷, 毛粟, 茄谷, 铁谷4号, 嫩选十号, 陇谷10号, 辽谷1号, 蒙早谷9号, 红钙谷, 二不黄, 白罗砂, 竹叶青
Yugu 2, Shilixiang, Bagu 6, Bagu 81, Bagu 210, Ba 91-0079, Maomaogu, Maogu 2, Xiaoqinggu, Longzhuagu, Heiseyao, Zaogu, Jinfen 13, Fenxuan 5, Hongtuigu, Longzhuanian, Honggangu, Huhehaotedamaogu, 11qie1071, Miquangu, Gushanggu, Saiwaixiangguzi, Hongrangu, Xiaomiaogu, Daqingmiaoyuci, Gahonggu, Xianzihuigu, Erbaigu, Red manna, Ise-455, Huangsu, Huangguzi, 15HN-206, 15HN-79, Liushitianhuanjia, Guzi, Hongnuogu, Maosu, Qiegu, Tiegu 4, Nenxuanshi, Longgu 10, Liaogu1, Mengzaogu 9, Honggaigu, Erbuhuang, Bailuosha, Zhuyeqing
Hap_7 2 毛毛亮, 陇谷11号 Maomaoliang, Longgu 11
Hap_8 1 冀特5号 Jite 5
Hap_9 3 张农8, 谷子, 蒜皮白 Zhangnong8, Guzi, Suanpibai
Hap_10 1 坝谷139 Bagu 139
Hap_11 2 小白苗, K-3606 Xiaobaimiao, K-3606
Hap_12 1 大同黄 Datonghuang
Hap_13 3 糟皮一把奇, 朝鲜谷子, SET3/80 Zaopiyibaqi, Chaoxianguzi, SET3/80
Hap_14 2 小早谷, 谷子 Xiaozaogu, Guzi
Hap_15 2 沙湾谷子, 谷丰2号 Shawanguzi, Gufeng 2
Hap_16 2 法谷28-81, 叩根 Fagu 28-81, Kougen
Hap_17 1 ISE770 ISE770
Hap_18 1 小明谷子 Xiaomingguzi
Hap_19 1 粘子糯 Nianzinuo

图8

基于SiPRR37基因SNP的单倍型效应分析 柱上不同大小写字母分别表示在0.01和0.05水平差异显著。"

[1] Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol, 2000,41:791-803.
doi: 10.1093/pcp/41.6.791 pmid: 10945350
[2] 李剑峰, 李婷, 贾小平. PRRs家族功能基因的研究进展. 植物遗传资源学报, 2019,20:1399-1407.
Li J F, Li T, Jia X P. Advances on unlocking the functional basis of PRRs family genes. J Plant Genet Resour, 2019,20:1399-1407 (in Chinese with English abstract).
[3] Farré Eva M, Kay S A. PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J, 2007,52:548-560.
doi: 10.1111/j.1365-313X.2007.03258.x pmid: 17877705
[4] Matsushika A, Makino S, Kojima M, Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol, 2000,41:1002-1012.
doi: 10.1093/pcp/pcd043 pmid: 11100772
[5] Koo B H, Yoo S C, Park J W, Kwon C T, Lee B D, An G, Zhang Z Y, Li J J, Li Z C, Paek N C. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant, 2013,6:1877-1888.
doi: 10.1093/mp/sst088
[6] Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet, 2005,110:778-786.
doi: 10.1007/s00122-004-1905-4 pmid: 15723276
[7] Liu C, Song G Y, Zhou Y H, Qu X F, Guo Z B, Liu Z W, Jiang D M, Yang D C. OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep, 2015,5:12803.
doi: 10.1038/srep12803 pmid: 26238949
[8] Gao H, Jin M N, Zheng X M, Chen J, Yuan D Y, Xin Y Y, Wang M Q, Huang D Y, Zhang Z, Zhou K N, Sheng P K, Ma J, Ma W W, Deng H F, Jiang L, Liu S J, Wang H Y, Wu C Y, Yuan L P, Wan J M. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014,111:16337-16342.
doi: 10.1073/pnas.1418204111 pmid: 25378698
[9] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147
[10] Fujino K, Yamanouchi U, Yano M. Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor Appl Genet, 2012,126:611-618.
pmid: 23090144
[11] Turner A, Beales J, Faure S, Dunford R P, Laurie D A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005,310:1031-1034.
doi: 10.1126/science.1117619 pmid: 16284181
[12] Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulatoris misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.). Theor Appl Genet, 2007,115:721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915
[13] Murphy R L, Klein R R, Morishige D T, Brady J A, Rooney W L, Miller F R, Dugas D V, Klein P E, Mullet J E. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA, 2011,108:16469-16474.
doi: 10.1073/pnas.1106212108 pmid: 21930910
[14] Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann Bot-London, 2014,114:1445-1458.
doi: 10.1093/aob/mcu032
[15] Lister D L, Thaw S, Bower M A, Jones H, Charles M P, Jones G, Smith L M J, Howe C J, Brown T A, Jones M K. Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from ‘historic’ specimens. J Archaeol Sci, 2009,36:1092-1098.
doi: 10.1016/j.jas.2008.12.012
[16] Klein R R, Miller F R, Dugas D V, Brown P J, Burrell A M, Klein P E. Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor Appl Genet, 2015,128:1669-1683.
doi: 10.1007/s00122-015-2523-z pmid: 25982128
[17] Liu C, Qu X, Zhou Y, Song G, Abiri N, Xiao Y, Liang F, Jiang D, Hu Z, Yang D. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant Cell Environ, 2018,41:630-645.
pmid: 29314052
[18] Liu T, Carlsson J, Takeuchi T, Newton L, Farré E M. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant J, 2013,76:101-114.
pmid: 23808423
[19] Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K. Impact of clock associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci USA, 2009,106:7251-7256.
doi: 10.1073/pnas.0900952106 pmid: 19359492
[20] Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T. Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol, 2009,50:447-462.
doi: 10.1093/pcp/pcp004 pmid: 19131357
[21] Briat J F, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot, 2010,105:811-822.
[22] Grundy J, Stoker C, Carré I A. Circadian regulation of abiotic stress tolerance in plants. Front Plant Sci, 2015,6:1-15.
pmid: 25653664
[23] Seo P J, Mas P. STRESSing the role of the plant circadian clock. Trends Plant Sci, 2015,20:230-237.
pmid: 25631123
[24] Li H W, Li C H, Pao W K. Cytogenetical and genetical studies of the interspecific cross between the cultivated foxtail millet, Setaria italica(L.) Beauv., and the green foxtail millet S. viridis L. J Am Soc Agron, 1945,37:32-54.
[25] Brutnell T P, Lin W, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010,22:2537-2544.
[26] Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013,33:328-343.
doi: 10.3109/07388551.2012.716809 pmid: 22985089
[27] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016,42:19-30.
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agron Sin, 2016,42:19-30 (in Chinese with English abstract).
[28] Diao X M, Jia G Q. Origin and domestication of foxtail millet. In: Doust A, Diao X M, eds. Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models. Cham: Springer Press, 2017. pp 61-72.
[29] 贾小平, 李剑峰, 全建章, 王永芳, 董志平, 张博, 袁玺垒. 不同光周期条件下谷子农艺性状的光周期敏感性评价. 植物遗传资源学报, 2018,19:919-924.
Jia X P, Li J F, Quan J Z, Wang Y F, Dong Z P, Zhang B, Yuan X L. Evaluation of photoperiod sensitivity of agronomic traits of foxtail millet varieties ( Setaria italica) under different photoperiod conditions. J Plant Genet Resour, 2018,19:919-924 (in Chinese with English abstract).
[30] 贾小平, 袁玺垒, 李剑峰, 张博, 张小梅, 郭秀璞, 陈春燕. 不同光温条件谷子资源主要农艺性状的综合评价. 中国农业科学, 2018,51:2429-2441.
Jia X P, Yuan X L, Li J F, Zhang B, Zhang X M, Guo X P, Chen C Y. Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions. Sci Agric Sin, 2018,51:2429-2441 (in Chinese with English abstract).
[31] Margarita M H, Wang X W, Barbier H, Brutnell T P, Devos K M, Doust A N. Genetic control and comparative genomic analysis of flowering time inSetaria( Poaceae). G3: Genes Genom Genet, 2013,3:283-295.
[32] Ni X M, Xia Q J, Zhang H B, Cheng S, Li H, Fan G Y, Guo T, Huang P, Xiang H T, Chen Q C, Li N, Zou H F, Cai X M, Lei X J, Wang X M, Zhou C S, Zhao Z H, Zhang G Y, Du G H, Cai W, Quan Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience, 2017,6:1-8.
[33] Doust A N, Mauro-Herrera M, Hodgeand J G, Stromsk J. The C4 model grass Setaria is a short day plant with secondary long day genetic regulation. Front Plant Sci, 2017,8:1-10.
[34] 谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析. 河南农业大学硕士学位论文, 河南郑州, 2012.
Xie L L. QTL Mapping and Analysis of the Photoperiod-sensitive Traits in Foxtail Millet. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract).
[35] Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet ( Setaria italica). Nat Genet, 2013,45:957-961.
[36] Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3: Genes Genom Genet, 2017,7:1587-1594.
[37] Mizuno T, Nakamichi N. Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol, 2005,46:677-685.
doi: 10.1093/pcp/pci087 pmid: 15767264
[38] Guo Z, Song Y, Zhou R, Ren Z, Jia J. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol, 2010,185:841-851.
[39] 贾小平, 袁玺垒, 李剑峰, 王永芳, 张小梅, 张博, 全建章, 董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析. 作物学报, 2020,46:1052-1062.
Jia X P, Yuan X L, Li J F, Wang Y F, Zhang X M, Zhang B, Quan J Z, Dong Z P. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet(Setaria italica L.). Acta Agron Sin, 2020,46:1052-1062 (in Chinese with English abstract).
[40] Campoli C, Shtaya M, Davis S J, Korff M V. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol, 2012,12:97.
[41] 徐江民, 姜洪真, 林晗, 黄苗苗, 付巧丽, 曾大力, 饶玉春. 水稻ES1参与生物钟基因表达调控以及逆境胁迫响应. 植物学报, 2016,51:743-756.
Xu J M, Jiang H Z, Lin H, Huang M M, Fu Q L, Zeng D L, Rao Y C. Early Senescence 1 participates in the expression regulation of circadian clock genes and response to stress in rice. Bull Bot, 2016,51:743-756 (in Chinese with English abstract).
[42] Marcolino-Gomes J, Rodrigues F A, Fuganti-Pagliarini R, Bendix C, Nakayama T J, Celaya B, Molinari H B C, Neves de Oliveira M C, Harmon F G, Nepomuceno A. Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One, 2014,9:e86402.
[43] 李佳, 刘运华, 张余, 陈晨, 余霞, 余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响. 遗传, 2017,39:837-846.
Li J, Liu Y H, Zhang Y, Chen C, Yu X, Yu S W. Drought stress modulates diurnal oscillations of circadian clock and drought- responsive genes in Oryza sativa L. Hereditas, 2017,39:837-846 (in Chinese with English abstract).
[44] Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J, 2000,21:143-155.
pmid: 10743655
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[7] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[8] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[9] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[10] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[11] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[12] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[13] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[14] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[15] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!