作物学报 ›› 2021, Vol. 47 ›› Issue (4): 638-649.doi: 10.3724/SP.J.1006.2021.04139
贾小平1,*(), 李剑峰1, 张博1, 全建章2, 王永芳2, 赵渊1, 张小梅1, 王振山1, 桑璐曼1, 董志平2,*()
JIA Xiao-Ping1,*(), LI Jian-Feng1, ZHANG Bo1, QUAN Jian-Zhang2, WANG Yong-Fang2, ZHAO Yuan1, ZHANG Xiao-Mei1, WANG Zhen-Shan1, SANG Lu-Man1, DONG Zhi-Ping2,*()
摘要:
从谷子品种延谷11号克隆生物钟基因SiPRR37, 通过生物信息学分析、组织特异性表达分析、4种不同光温组合条件的昼夜表达模式分析以及对NaCl、ABA、PEG、低温、Fe 5种非生物胁迫的响应特点分析, 揭示SiPRR37参与谷子光温互作调控以及应对非生物胁迫的作用机制; 并对160份谷子材料重测序检测SiPRR37基因的突变位点进行单倍型分析, 探究该基因对谷子主要农艺性状的影响。结果表明, SiPRR37基因蛋白质编码区(sequence coding for amino acids in protein, CDS)全长2247 bp, 编码748个氨基酸, 含有REC和CCT 2个结构域, 基于PRR37蛋白的系统进化分析发现, 谷子与糜子、高粱、玉米亲缘关系最近; 启动子预测分析发现, SiPRR37启动子区存在光、温、生长素、赤霉素、脱落酸、茉莉酸甲酯、干旱和盐胁迫等多种应答元件。SiPRR37相对表达量从高到低依次为根、穗颈、穗、顶叶、次顶叶、茎秆; 4个光温组合条件SiPRR37均只在光照期出现1个表达峰, 无论高温(27℃)还是低温(22℃), 短日照相比长日照表达峰均要提前, 无论长日照还是短日照, 低温(22℃)相比高温(27℃)表达峰均要提前; NaCl、低温(15℃)胁迫能够抑制SiPRR37表达, PEG模拟干旱胁迫和Fe胁迫能够诱导SiPRR37基因表达, SiPRR37参与了ABA信号传导过程。位于SiPRR37 CDS区的10个SNP将160份谷子材料分为19个单倍型, 其中3个单倍型(Hap_7、Hap_10、Hap_19)是改善穗部性状的有利单倍型。谷子SiPRR37基因表达具有昼夜节律性, 同时受光周期和温度调控, 并且参与了谷子对盐胁迫、低温胁迫、干旱胁迫和铁胁迫的应答反应, 同时SiPRR37与抽穗期和多个穗部性状相关, 在开展谷子高产分子辅助选育中具有一定应用潜力。
[1] |
Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol, 2000,41:791-803.
doi: 10.1093/pcp/41.6.791 pmid: 10945350 |
[2] | 李剑峰, 李婷, 贾小平. PRRs家族功能基因的研究进展. 植物遗传资源学报, 2019,20:1399-1407. |
Li J F, Li T, Jia X P. Advances on unlocking the functional basis of PRRs family genes. J Plant Genet Resour, 2019,20:1399-1407 (in Chinese with English abstract). | |
[3] |
Farré Eva M, Kay S A. PRR7 protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J, 2007,52:548-560.
doi: 10.1111/j.1365-313X.2007.03258.x pmid: 17877705 |
[4] |
Matsushika A, Makino S, Kojima M, Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol, 2000,41:1002-1012.
doi: 10.1093/pcp/pcd043 pmid: 11100772 |
[5] |
Koo B H, Yoo S C, Park J W, Kwon C T, Lee B D, An G, Zhang Z Y, Li J J, Li Z C, Paek N C. Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant, 2013,6:1877-1888.
doi: 10.1093/mp/sst088 |
[6] |
Nakagawa H, Yamagishi J, Miyamoto N, Motoyama M, Yano M, Nemoto K. Flowering response of rice to photoperiod and temperature: a QTL analysis using a phenological model. Theor Appl Genet, 2005,110:778-786.
doi: 10.1007/s00122-004-1905-4 pmid: 15723276 |
[7] |
Liu C, Song G Y, Zhou Y H, Qu X F, Guo Z B, Liu Z W, Jiang D M, Yang D C. OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep, 2015,5:12803.
doi: 10.1038/srep12803 pmid: 26238949 |
[8] |
Gao H, Jin M N, Zheng X M, Chen J, Yuan D Y, Xin Y Y, Wang M Q, Huang D Y, Zhang Z, Zhou K N, Sheng P K, Ma J, Ma W W, Deng H F, Jiang L, Liu S J, Wang H Y, Wu C Y, Yuan L P, Wan J M. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA, 2014,111:16337-16342.
doi: 10.1073/pnas.1418204111 pmid: 25378698 |
[9] |
Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147 |
[10] |
Fujino K, Yamanouchi U, Yano M. Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor Appl Genet, 2012,126:611-618.
pmid: 23090144 |
[11] |
Turner A, Beales J, Faure S, Dunford R P, Laurie D A. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 2005,310:1031-1034.
doi: 10.1126/science.1117619 pmid: 16284181 |
[12] |
Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. A pseudo-response regulatoris misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.). Theor Appl Genet, 2007,115:721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915 |
[13] |
Murphy R L, Klein R R, Morishige D T, Brady J A, Rooney W L, Miller F R, Dugas D V, Klein P E, Mullet J E. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA, 2011,108:16469-16474.
doi: 10.1073/pnas.1106212108 pmid: 21930910 |
[14] |
Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals. Ann Bot-London, 2014,114:1445-1458.
doi: 10.1093/aob/mcu032 |
[15] |
Lister D L, Thaw S, Bower M A, Jones H, Charles M P, Jones G, Smith L M J, Howe C J, Brown T A, Jones M K. Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from ‘historic’ specimens. J Archaeol Sci, 2009,36:1092-1098.
doi: 10.1016/j.jas.2008.12.012 |
[16] |
Klein R R, Miller F R, Dugas D V, Brown P J, Burrell A M, Klein P E. Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor Appl Genet, 2015,128:1669-1683.
doi: 10.1007/s00122-015-2523-z pmid: 25982128 |
[17] |
Liu C, Qu X, Zhou Y, Song G, Abiri N, Xiao Y, Liang F, Jiang D, Hu Z, Yang D. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Plant Cell Environ, 2018,41:630-645.
pmid: 29314052 |
[18] |
Liu T, Carlsson J, Takeuchi T, Newton L, Farré E M. Direct regulation of abiotic responses by the Arabidopsis circadian clock component PRR7. Plant J, 2013,76:101-114.
pmid: 23808423 |
[19] |
Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K. Impact of clock associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc Natl Acad Sci USA, 2009,106:7251-7256.
doi: 10.1073/pnas.0900952106 pmid: 19359492 |
[20] |
Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T. Transcript profiling of an Arabidopsis pseudo response regulator arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol, 2009,50:447-462.
doi: 10.1093/pcp/pcp004 pmid: 19131357 |
[21] | Briat J F, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot, 2010,105:811-822. |
[22] |
Grundy J, Stoker C, Carré I A. Circadian regulation of abiotic stress tolerance in plants. Front Plant Sci, 2015,6:1-15.
pmid: 25653664 |
[23] |
Seo P J, Mas P. STRESSing the role of the plant circadian clock. Trends Plant Sci, 2015,20:230-237.
pmid: 25631123 |
[24] | Li H W, Li C H, Pao W K. Cytogenetical and genetical studies of the interspecific cross between the cultivated foxtail millet, Setaria italica(L.) Beauv., and the green foxtail millet S. viridis L. J Am Soc Agron, 1945,37:32-54. |
[25] | Brutnell T P, Lin W, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010,22:2537-2544. |
[26] |
Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol, 2013,33:328-343.
doi: 10.3109/07388551.2012.716809 pmid: 22985089 |
[27] | 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民. 谷子核心种质表型遗传多样性分析及综合评价. 作物学报, 2016,42:19-30. |
Wang H G, Jia G Q, Zhi H, Wen Q F, Dong J L, Chen L, Wang J J, Cao X N, Liu S C, Wang L, Qiao Z J, Diao X M. Phenotypic diversity evaluations of foxtail millet core collections. Acta Agron Sin, 2016,42:19-30 (in Chinese with English abstract). | |
[28] | Diao X M, Jia G Q. Origin and domestication of foxtail millet. In: Doust A, Diao X M, eds. Genetics and Genomics of Setaria. Plant Genetics and Genomics: Crops and Models. Cham: Springer Press, 2017. pp 61-72. |
[29] | 贾小平, 李剑峰, 全建章, 王永芳, 董志平, 张博, 袁玺垒. 不同光周期条件下谷子农艺性状的光周期敏感性评价. 植物遗传资源学报, 2018,19:919-924. |
Jia X P, Li J F, Quan J Z, Wang Y F, Dong Z P, Zhang B, Yuan X L. Evaluation of photoperiod sensitivity of agronomic traits of foxtail millet varieties ( Setaria italica) under different photoperiod conditions. J Plant Genet Resour, 2018,19:919-924 (in Chinese with English abstract). | |
[30] | 贾小平, 袁玺垒, 李剑峰, 张博, 张小梅, 郭秀璞, 陈春燕. 不同光温条件谷子资源主要农艺性状的综合评价. 中国农业科学, 2018,51:2429-2441. |
Jia X P, Yuan X L, Li J F, Zhang B, Zhang X M, Guo X P, Chen C Y. Comprehensive evaluation of main agronomic traits of millet resources under different light and temperature conditions. Sci Agric Sin, 2018,51:2429-2441 (in Chinese with English abstract). | |
[31] | Margarita M H, Wang X W, Barbier H, Brutnell T P, Devos K M, Doust A N. Genetic control and comparative genomic analysis of flowering time inSetaria( Poaceae). G3: Genes Genom Genet, 2013,3:283-295. |
[32] | Ni X M, Xia Q J, Zhang H B, Cheng S, Li H, Fan G Y, Guo T, Huang P, Xiang H T, Chen Q C, Li N, Zou H F, Cai X M, Lei X J, Wang X M, Zhou C S, Zhao Z H, Zhang G Y, Du G H, Cai W, Quan Z W. Updated foxtail millet genome assembly and gene mapping of nine key agronomic traits by resequencing a RIL population. Gigascience, 2017,6:1-8. |
[33] | Doust A N, Mauro-Herrera M, Hodgeand J G, Stromsk J. The C4 model grass Setaria is a short day plant with secondary long day genetic regulation. Front Plant Sci, 2017,8:1-10. |
[34] | 谢丽莉. 谷子光周期敏感相关性状的QTL定位与分析. 河南农业大学硕士学位论文, 河南郑州, 2012. |
Xie L L. QTL Mapping and Analysis of the Photoperiod-sensitive Traits in Foxtail Millet. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract). | |
[35] | Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet ( Setaria italica). Nat Genet, 2013,45:957-961. |
[36] | Zhang K, Fan G Y, Zhang X X, Zhao F, Wei W, Du G H, Feng X L, Wang X M, Wang F, Song G L, Zou H F, Zhang X L, Li S D, Ni X M, Zhang G Y, Zhao Z H. Identification of QTLs for 14 agronomically important traits in Setaria italica based on SNPs generated from high-throughput sequencing. G3: Genes Genom Genet, 2017,7:1587-1594. |
[37] |
Mizuno T, Nakamichi N. Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol, 2005,46:677-685.
doi: 10.1093/pcp/pci087 pmid: 15767264 |
[38] | Guo Z, Song Y, Zhou R, Ren Z, Jia J. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol, 2010,185:841-851. |
[39] | 贾小平, 袁玺垒, 李剑峰, 王永芳, 张小梅, 张博, 全建章, 董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析. 作物学报, 2020,46:1052-1062. |
Jia X P, Yuan X L, Li J F, Wang Y F, Zhang X M, Zhang B, Quan J Z, Dong Z P. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet(Setaria italica L.). Acta Agron Sin, 2020,46:1052-1062 (in Chinese with English abstract). | |
[40] | Campoli C, Shtaya M, Davis S J, Korff M V. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC Plant Biol, 2012,12:97. |
[41] | 徐江民, 姜洪真, 林晗, 黄苗苗, 付巧丽, 曾大力, 饶玉春. 水稻ES1参与生物钟基因表达调控以及逆境胁迫响应. 植物学报, 2016,51:743-756. |
Xu J M, Jiang H Z, Lin H, Huang M M, Fu Q L, Zeng D L, Rao Y C. Early Senescence 1 participates in the expression regulation of circadian clock genes and response to stress in rice. Bull Bot, 2016,51:743-756 (in Chinese with English abstract). | |
[42] | Marcolino-Gomes J, Rodrigues F A, Fuganti-Pagliarini R, Bendix C, Nakayama T J, Celaya B, Molinari H B C, Neves de Oliveira M C, Harmon F G, Nepomuceno A. Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One, 2014,9:e86402. |
[43] | 李佳, 刘运华, 张余, 陈晨, 余霞, 余舜武. 干旱对水稻生物钟基因和干旱胁迫响应基因每日节律性变化的影响. 遗传, 2017,39:837-846. |
Li J, Liu Y H, Zhang Y, Chen C, Yu X, Yu S W. Drought stress modulates diurnal oscillations of circadian clock and drought- responsive genes in Oryza sativa L. Hereditas, 2017,39:837-846 (in Chinese with English abstract). | |
[44] |
Kurup S, Jones H D, Holdsworth M J. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J, 2000,21:143-155.
pmid: 10743655 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[3] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[4] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[5] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[6] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[9] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[10] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[11] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[12] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[13] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[14] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[15] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
|