欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (4): 626-637.doi: 10.3724/SP.J.1006.2021.04145

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜早熟性状QTL定位及候选基因筛选

李书宇(), 黄杨, 熊洁, 丁戈, 陈伦林*(), 宋来强   

  1. 江西省农业科学院作物研究所, 江西南昌330200
  • 收稿日期:2020-07-02 接受日期:2020-10-14 出版日期:2021-04-12 网络出版日期:2020-11-11
  • 通讯作者: 陈伦林
  • 作者简介:E-mail: lishuyu0104@163.com
  • 基金资助:
    国家自然科学基金项目(31660403);国家重点研发计划项目(2017YFD0101703);国家现代农业产业技术体系建设专项(CARS-12)

QTL mapping and candidate genes screening of earliness traits in Brassica napus L.

LI Shu-Yu(), HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin*(), SONG Lai-Qiang   

  1. Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2020-07-02 Accepted:2020-10-14 Published:2021-04-12 Published online:2020-11-11
  • Contact: CHEN Lun-Lin
  • Supported by:
    National Natural Science Foundation of China(31660403);National Key Research and Development Program of China(2017YFD0101703);China Agriculture Research System(CARS-12)

摘要:

目前对于油菜早熟的研究主要围绕开花期性状进行, 虽然开花期与生育期呈显著正相关, 但却并不完全一致。对于油菜开花后一系列生长发育进程相关性状的遗传研究和QTL定位鲜有报道。本研究以成熟期差异较大的2个油菜品种‘花前早’和‘Global’构建的DH群体为材料, 对影响油菜全生育期的各个发育阶段(开花期、花期持续时间、角果期持续时间和全生育期等)进行表型调查和QTL定位分析。共检测到30个早熟相关性状QTL位点, 其中开花期、花期持续时间、角果期持续时间和全生育期等分别检测到12、5、4和9个QTL位点, 解释了5.8%~22.4%的表型方差。发现4、2和1个全生育期QTL置信区间分别与开花期、花期持续时间、角果期持续时间位点置信区间完全或部分重叠。筛选到29个可能与油菜早熟性状相关的候选基因, 它们通过调控花期或籽粒发育等生长发育进程影响油菜早熟。因此, 在早熟性状的研究中, 可以同时从开花期和籽粒发育过程入手, 不但有利于使熟期进一步提前, 也可减缓早熟油菜品种过早开花导致的冬前低温寒潮天气的不利影响。

关键词: 甘蓝型油菜, 早熟, QTL作图, 候选基因

Abstract:

Currently, the research on earliness traits of rapeseed mainly focused on flowering time. Although there was a significant positive correlation between the flowering period and the growth period, it was not completely consistent. There are few reports on the genetic studies and QTL mapping of traits related to rapeseed growth and development after flowering. We carried out phenotypic survey (flowering time, flowering period duration, silique period duration etc.) and QTL mapping with the DH population constructed by ‘Huaqianzao’ and ‘Global’ as material. A total of 30 QTL loci for earliness traits were detected. Among them, 12, 5, 4 and 9 QTL loci were detected in the flowering time, flowering period duration, silique period duration and full growth period, respectively, explaining 5.8%-22.4% phenotypic variance. The 2, 4, and 1 QTL confidence intervals of full growth period were found overlap in part or in whole with flowering time, flowering period duration and silique period duration respectively. The 29 candidate genes were screened, which affected the earliness traits by regulating flowering or silique development in rapeseed growth and development processes. Therefore, in the study of earliness traits, we could consider flowering time and silique development process at the same time, which not only helps to advance the maturity period, but also reduces the adverse effects of early flowering.

Key words: Brassica napus L., earliness traits, QTL mapping, candidate genes

表1

亲本和DH群体在4个环境下的早熟相关性状表型"

环境
Environment
研究材料
Material
开花期
Flowering time
花期持续时间
Flowering period duration
角果期持续时间
Silique period
duration
全生育期
Full growth period
2016南昌
2016 Nanchang
亲本
Parents
花前早 Huaqianzao 76.0 A 64 A 32.5 A 172.5 A
Global 138.5 B 36.5 B 30.0 A 205.0 B
DH群体
DH population
最大值 Max. 141.0 77.0 36.0 205.0
最小值 Min. 76.0 26.0 22.0 172.5
均值 Mean 118.5 43.5 29.0 191.0
2016韶关
2016 Shaoguan
亲本
Parents
花前早 Huaqianzao 64.5 A 40.5 A 27.5 A 132.5 A
Global 123.5 B 22.5 B 37.5 B 183.5 B
DH群体
DH population
最大值 Max. 131.0 58.5 44.5 185.0
最小值 Min. 58.0 17.0 11.0 124.0
均值 Mean 97.5 34.2 30.2 161.8
2018南昌
2018 Nanchang
亲本
Parents
花前早 Huaqianzao 108.0 A 46.0 A 29.0 A 183.0 A
Global 149.0 B 22 B 30.0 A 201.0 B
DH群体
DH population
最大值 Max. 149.0 46.0 34.0 203.0
最小值 Min. 108.0 17.0 26.0 181.0
均值 Mean 138.1 26.3 30.1 194.5
2018西宁
2018 Xining
亲本
Parents
花前早 Huaqianzao 56.0 A 31.5 A 31.5 A 119.0 A
Global 72.5 B 41.0 B 16.0 B 129.5 B
DH群体
DH population
最大值 Max. 98.0 42.0 31.5 135.5
最小值 Min. 56.0 18.0 9.5 116.5
均值 Mean 72.5 30.1 20.5 123.9

图1

DH群体早熟相关性状的频数分布图 2016 NC, 2016 SG, 2018 NC和2018 XN分别指2016年南昌, 2016年韶关, 2018年南昌和2018年西宁。"

表2

DH群体4个早熟性状的相关性分析"

开花期
Flowering time
花期持续时间
Flowering period duration
角果期持续时间
Silique period duration
全生育期
Full growth period
开花期
Flowering time
1 -0.880** 0.041 0.926**
花期持续时间
Flowering period duration
1 -0.120 -0.701**
角果期持续时间
Silique period duration
1 0.158*
全生育期
Full growth period
1

表3

遗传连锁图谱信息统计表"

连锁群
Chr.
连锁群总长度
Length (cM)
标记数
No. of markers
相邻标记间的最大间隔
Max. interval (cM)
Bin数目
No. bins
相邻bin间平均距离
Bin interval (cM)
A01 110.96 48,693 4.72 183 0.61
A02 117.38 44,545 5.95 201 0.59
A03 197.46 65,502 10.52 280 0.71
A04 119.03 43,644 6.56 190 0.63
A05 101.61 55,238 3.39 187 0.55
A06 107.28 43,735 4.37 197 0.55
A07 118.95 40,195 5.75 212 0.56
A08 62.56 38,113 1.50 151 0.42
A09 139.70 55,599 8.99 226 0.62
A10 95.92 44,019 3.39 185 0.52
C01 126.88 39,781 5.48 197 0.65
C02 148.14 83,307 8.73 201 0.74
C03 206.71 85,609 7.96 320 0.65
C04 195.49 37,202 9.81 248 0.79
C05 193.22 22,608 6.68 217 0.90
C06 161.24 27,401 17.33 165 0.98
C07 157.87 31,921 5.80 211 0.75
C08 133.07 36,408 5.50 194 0.69
C09 107.28 31,475 6.72 140 0.77
平均Average 136.88 46,052 6.80 206 0.67
合计Total 2600.73 874,995 3905

图2

遗传连锁图谱中的标记在各连锁群上的分布情况"

表4

不同环境下检测出的早熟相关性状QTL"

位点
Locus
性状
Trait
染色体
Chr.
位置
Pos (cM)
LOD值
LOD value
贡献率
R2 (%)
加性效应Additive effect 置信区间Confidence
interval
环境
Environment
qFT.A02-1 FT A02 18.23 5.37 10.6 2.15 16.52-18.52 2018西宁 2018 Xining
qFT.A02-2 FT A02 60.99 3.99 9.1 -1.82 58.14-61.84 2018西宁 2018 Xining
qFT.A06-1 FT A06 95.90 6.73 10.9 2.39 95.61-96.75 2018南昌 2018 Nanchang
qFT.A09-1 FT A09 84.60 5.22 11.8 5.56 84.03-87.84 2016韶关 2016 Shaoguan
qFT.A09-2 FT A09 123.12 4.04 8.8 3.92 121.65-126.32 2016南昌 2016 Nanchang
qFT.C04-1 FT C04 99.26 4.32 9.5 5.04 96.73-99.26 2016韶关 2016 Shaoguan
qFT.C06-1 FT C06 145.13 5.90 9.6 2.29 144.13-149.13 2018南昌 2018 Nanchang
qFT.C07-1 FT C07 81.72 3.76 5.8 1.69 78.76-84.10 2018南昌 2018 Nanchang
qFT.C08-1 FT C08 15.37 7.47 12.4 2.05 10.88-15.37 2018西宁 2018 Xining
qFT.C08-2 FT C08 40.61 6.60 11.1 2.01 34.77-43.49 2018西宁 2018 Xining
FT C08 43.49 4.65 9.0 4.00 42.63-47.70 2016南昌 2016 Nanchang
FT C08 45.80 12.87 22.4 3.71 45.80-45.80 2018南昌 2018 Nanchang
qFT.C08-3 FT C08 52.89 6.54 12.5 6.50 52.04-53.75 2016韶关 2016 Shaoguan
qFT.C08-4 FT C08 104.06 4.57 7.2 2.08 103.27-104.94 2018南昌 2018 Nanchang
qFPD.A02-1 FPD A02 19.09 4.22 7.3 -1.40 19.09-21.67 2018南昌 2018 Nanchang
qFPD.A06-1 FPD A06 95.61 6.14 11.0 -1.54 95.33-97.32 2018南昌 2018 Nanchang
qFPD.A09-1 FPD A09 84.60 4.28 8.9 -2.21 84.03-87.25 2016韶关 2016 Shaoguan
qFPD.C04-1 FPD C04 123.90 3.79 8.4 -2.42 118.86-127.70 2016南昌 2016 Nanchang
qFPD.C08-1 FPD C08 45.80 8.24 15.2 -1.95 44.36-46.70 2018南昌 2018 Nanchang
qSPD.A09-1 SPD A09 91.99 4.59 9.1 -1.19 89.73-92.87 2018西宁 2018 Xining
qSPD.C04-1 SPD C04 64.02 5.07 10.3 -1.30 62.14-64.30 2018西宁 2018 Xining
qSPD.C08-1 SPD C08 17.20 4.77 10.2 1.71 13.88-21.20 2016韶关 2016 Shaoguan
qSPD.C08-2 SPD C08 32.35 5.86 10.1 -1.27 32.35-33.56 2018西宁 2018 Xining
qFGP.A02-1 FGP A02 50.67 5.50 10.7 -5.35 50.10-51.53 2016韶关 2016 Shaoguan
qFGP.A02-2 FGP A02 61.56 5.72 11.9 -1.53 58.71-62.13 2018西宁 2018 Xining
qFGP.A09-1 FGP A09 84.60 4.48 8.8 4.21 83.74-87.25 2016韶关 2016 Shaoguan
qFGP.C06-1 FGP C06 111.50 7.34 12.0 1.34 111.16-119.50 2018南昌 2018 Nanchang
qFGP.C07-1 FGP C07 79.33 6.53 10.0 1.16 78.14-80.33 2018南昌 2018 Nanchang
qFGP.C08-1 FGP C08 5.40 7.56 11.8 1.41 4.54-9.88 2018南昌 2018 Nanchang
qFGP.C08-2 FGP C08 23.27 6.16 12.5 2.15 21.20-27.89 2016南昌 2016 Nanchang
qFGP.C08-3 FGP C08 42.05 3.99 7.2 1.21 40.16-44.65 2018西宁 2018 Xining
FGP C08 44.07 5.42 10.7 4.84 43.49-44.65 2016韶关 2016 Shaoguan
qFGP.C08-4 FGP C08 86.77 5.97 9.2 1.21 86.77-87.36 2018南昌 2018 Nanchang

表5

早熟相关性状候选基因"

[1] 王汉中, 殷艳. 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421.
doi: 10.7505/j.issn.1007-9084.2014.03.020
Wang H Z, Yin Y. Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract).
[2] 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[3] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41:485-489.
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019,41:485-489 (in Chinese with English abstract).
[4] 沈金雄, 傅廷栋. 我国油菜生产、改良与食用油供给安全. 中国农业科技导报, 2013,13(1):1-8.
Shen J X, Fu T D. Rapeseed production, improvement and edible oil supply in China. J Agric Sci Technol, 2013,13(1):1-8 (in Chinese with English abstract).
[5] 王必庆, 王国槐. 油菜早熟性研究进展. 作物研究, 2009,23:336-338.
Wang B Q, Wang G H. The advance research of the precocious rape. Crop Res, 2009,23:336-338 (in Chinese with English abstract).
[6] 官春云, 靳芙蓉, 董国云, 官梅, 谭太龙. 冬油菜早熟品种生长发育特性研究. 中国工程科学, 2012,14(11):4-12.
Guan C Y, Jin F R, Dong G Y, Guan M, Tan T L. Exploring the growth and development properties of early variety of winter rapeseed. Strategic Study CAE, 2012,14(11):4-12 (in Chinese with English abstract).
[7] Fang J, Zhang F T, Wang H R, Wang W, Zhao F, Lie Z J, Sun C H, Chen F M, Xu F, Chang S Q, Wu L, Bu Q Y, Wang P R, Xie J K, Chen F, Huang X H, Zhan Y J, Zhu X G, Han B, Deng X J, Chu C C. Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA, 2019,116:18717-18722.
doi: 10.1073/pnas.1815030116 pmid: 31451662
[8] Jung C, Muller A E. Flowering time control and applications in plant breeding. Trends Plant Sci, 2009,14:563-573.
doi: 10.1016/j.tplants.2009.07.005 pmid: 19716745
[9] Xu L P, Hu K N, Zhang Z Q, Guan C Y, Chen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed ( Brassica napus L.). DNA Res, 2015,23:43-52.
doi: 10.1093/dnares/dsv035 pmid: 26659471
[10] Zhou Q H, Han D P, Mason A S, Zhou C, Zheng W, Li Y Z, Wu C J, Fu D H, Huang Y J. Earliness traits in rapeseed ( Brassica napus): SNP loci and candidate genes identified by genome-wide association analysis. DNA Res, 2018,25:229-244.
doi: 10.1093/dnares/dsx052 pmid: 29236947
[11] Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X X, Edwards D, Meng J L, Prangnel R, Stiller J, Batley J, Luckett D, Wratten N, Dennis E. Genetic and physical mapping of flowering time loci in canola ( Brassica napus L.). Theor Appl Genet, 2013,126:119-132.
doi: 10.1007/s00122-012-1966-8
[12] Wei D, Mei J, Fu Y, Joseph O D, Li J, Qian W. Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed, 2014,34:1797-1804.
doi: 10.1007/s11032-014-0139-7
[13] Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet, 1995,90:727-732.
doi: 10.1007/BF00222140 pmid: 24174034
[14] Long Y, Shi J Q, Qiu D, Li R Y, Meng J L. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics, 2007,177:2433-2444.
doi: 10.1534/genetics.107.080705 pmid: 18073439
[15] Mei D S, Wang H Z, Hu Q, Li Y D, Xu Y S, Li Y C. QTL analysis on plant height and flowering time in Brassica napus. Plant Breed, 2009,128:458-465.
doi: 10.1111/pbr.2009.128.issue-5
[16] Wang N, Chen B Y, Xu K, Gao G Z, Li F, Qiao J W, Yan G X, Li J, Li H, Wu X M. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci, 2016,24:338.
[17] 蔡长春, 傅廷栋, 陈宝元, 涂金星. 甘蓝型油菜遗传图谱的构建及开花期的QTL分析. 中国油料作物学报, 2007,29:1-8.
Cai C C, Fu T D, Chen B Y, Tu J X. Construction of a genetic linkagemap and its use for QTL analysis of flowering time in Brassica napus L. Chin J Oil Crop Sci, 2007,29:1-8 (in Chinese with English abstract).
[18] Liu H D, Du D Z, Guo S, Xiao L, Zhao Z, Zhao Z G, Xing X R, Tang G Y, Xu L, Fu Z, Yao Y M, Duncan R W. QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape ( Brassica napus L.). Mol Breed, 2016,36:1-14.
doi: 10.1007/s11032-015-0425-z
[19] Nelson M N, Rajasekaran R, Smith A, Chen S, Beeck C P, Siddique K H, Cowling W A. Quantitative trait loci for thermal time to flowering and photoperiod responsiveness discovered in summer annual-type Brassica napus L. PLoS One, 2014,9:e102611.
doi: 10.1371/journal.pone.0102611 pmid: 25061822
[20] Schiessl S, Iniguez L F, Qian W, Snowdon R J. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics, 2015,16:737.
pmid: 26419915
[21] Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed ( Brassica napus L.): identification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113:597-609.
doi: 10.1007/s00122-006-0324-0
[22] Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, Graham J K, Meng J L. The evolution of Brassica napus flowering locus paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol, 2009,9:271.
doi: 10.1186/1471-2148-9-271 pmid: 19939256
[23] Xie W B, Feng Q, Yu H H, Huang X H, Zhao Q, Xing Y Z, Yu S B, Han B, Zhang Q F. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA, 2010,107:10578-10583.
pmid: 20498060
[24] Landry B S, Hubert N Etoh T, Harada J J, Lincoln S E. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991,34:543-552.
doi: 10.1139/g91-084
[25] Shi J Q, Zhan J P, Yang Y H, YE J, Huang S M, Li R Y, Wang X F, Liu G H, Wang H Z. Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed ( Brassica napus L.). Sci Rep, 2015,5:14481.
doi: 10.1038/srep14481 pmid: 26434411
[26] Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013,8:e83052.
doi: 10.1371/journal.pone.0083052 pmid: 24386142
[27] 俎峰, 赵凯琴, 张云云, 田正书, 刘亚俊, 奚俊玉, 束正齐, 符明联. 甘蓝型油菜的花期与生育期QTL定位. 南方农业学报, 2019,50:500-505.
Zu F, Zhao K Q, Zhang Y Y, Tian Z S, Liu Y J, Xi J Y, Shu Z Q, Fu M L. QTL mapping of flowering time and maturity time in Brassica napus L. J Southern Agric, 2019,50:500-505 (in Chinese with English abstract).
[28] 张尧锋, 余华胜, 曾孝元, 林宝刚, 华水金, 张冬青, 傅鹰. 早熟甘蓝型油菜研究进展及其应用. 植物遗传资源学报, 2019,20:258-266.
Zhang Y F, Yu H S, Zeng X Y, Lin B G, Hua S J, Zhang D Q, Fu Y. Progress and application of early maturity in rapeseed ( Brassica napus L.). J Plant Genet Resour, 2019,20:258-266 (in Chinese with English abstract).
[29] 徐亮, 星晓蓉, 赵志, 姚艳梅. 特早熟春油菜品种青7号的选育. 中国种业, 2011,31:66-67.
Xu L, Xing X R, Zhao Z, Yao Y M. Breeding of special precocious spring rape variety Qingza No. 7. China Seed Ind, 2011,31:66-67 (in Chinese with English abstract).
[30] 柳海东, 赵绪涛, 杜德志. 利用QTL-seq技术定位甘蓝型春油菜早花位点cq DTFC8及其近等基因系构建. 植物生理学报, 2020,56:219-234.
Liu H D, Zhao X T, Du D Z. Mapping of the cqDTFC8 of early flowering site using QTL-seq technique and construction of its near-isogenic lines in Brassica napus L. Plant Physiol J, 2020,56:219-234 (in Chinese with English abstract).
[31] 潘云龙, 柳海东. 甘蓝型春油菜早花位点cqDTFA7a 加密及其近等基因系构建. 分子植物育种, 2019,17:7047-7057.
Pan Y L, Liu H D. Encryption for an early flowering time locus cqDTFA7a and construction of NILs in spring Brassica napus L. Mol Plant Breed, 2019,17:7047-7057 (in Chinese with English abstract).
[32] Boss P K, Bastow R M, Mylne J S, Caroline D. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 2004,16:18-31.
[33] Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 2011,68:2013-2037.
doi: 10.1007/s00018-011-0673-y
[34] Galvao V C, Horrer D, Kuttner F, Schmid M. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 2012,139:4072-4082.
pmid: 22992955
[35] Fornara F, Montaigu A, Coupland G. Snap shot: control of flowering in Arabidopsis. Cell, 2010,141:550-550.
doi: 10.1016/j.cell.2010.04.024 pmid: 20434991
[36] Kobayashi Y, Weigel D. Move on up, It’s time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007,21:2371-2384.
pmid: 17908925
[37] Levy Y Y, Mesnage S, Mylne J S. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science, 2002,297:243-246.
doi: 10.1126/science.1072147 pmid: 12114624
[38] Meng J. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.). BMC Plant Biol, 2012,12:238.
doi: 10.1186/1471-2229-12-238 pmid: 23241244
[39] Wang N, Qian W, Suppanz I, Wei L J, Mao B Z, Long Y, Meng J L, Muller A E, Jung C. Flowering time variation in oilseed rape ( Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J Exp Bot, 2011,8:1-18.
doi: 10.1093/jxb/8.1.1
[40] Zhao J J, Kulkarni V, Liu N, Carpio D P D, Bucher J, Bonnema G. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rape. J Exp Bot, 2010,6:1817-1825.
[41] Robert L S, Robson F, Sharpe A, Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol, 1998,37:763-772.
doi: 10.1023/a:1006064514311 pmid: 9678571
[42] Chen L, Dong F, Cai J, Xin Q, Fang C C, Liu L, Wan L L, Yang G S, Hong D F. A2.833-kb insertion in BnFLC.A2 and its homeologous exchange with Bn-FLC.C2 during breeding selection generated early-flowering rapeseed. Mol Plant, 2018,11:222-225.
doi: 10.1016/j.molp.2017.09.020 pmid: 29024744
[43] Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B. Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed(Brassica napus L.). BMC Plant Biol, 2012,12:238.
doi: 10.1186/1471-2229-12-238 pmid: 23241244
[44] Gendall A R, Levy Y Y, Wilson A, Dean C. The Vernalization 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell, 2001,107:525-535.
doi: 10.1016/s0092-8674(01)00573-6 pmid: 11719192
[45] Mara C D, Huang T B, Irish V F. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell, 2010,22:690-702.
doi: 10.1105/tpc.109.065946 pmid: 20305124
[46] 陈苇, 李劲峰, 张国建, 罗延青, 赵凯琴, 周丕才, 瞿观, 俎峰, 董云松, 王敬乔. 特大粒甘蓝型油菜籽粒和角果发育形态特征. 中国油料作物学报, 2013,35:658-664.
doi: 10.7505/j.issn.1007-9084.2013.06.007
Chen W, Li J F, Zhang G J, Luo Y Q, Zhao K Q, Zhou P C, Qu G, Zu F, Dong Y S, Wang J Q. Morphology and silique development of extra-large seed line DL01 of Brassica napus. Chin J Oil Crop Sci, 2013,35:658-664 (in Chinese with English abstract).
[47] Hu Y X, Xie Q, Chua N H. The Arabidopsis auxin-inducible gene argos controls lateral organ size. Plant Cell, 2003,15:1951-1961.
pmid: 12953103
[48] 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展. 生物资源, 2017,39:155-161.
Zhang M, Zhang H. Research progress of late embryogenesis abundant (LEA) protein involved in plant tolerance to abiotic stresses. Biotic Resour, 2017,39:155-161 (in Chinese with English abstract).
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471.
[10] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[11] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[12] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!