作物学报 ›› 2009, Vol. 35 ›› Issue (1): 79-86.doi: 10.3724/SP.J.1006.2009.00079

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1 山东省农业科学院作物研究所, 山东济南25100; 2 中国农业科学院作物科学研究所/国家小麦改良中心/国家农作物基因资源与基因改良重大科学工程, 北京100081; 3 CIMMYT中国办事处, 北京100081
  • 收稿日期:2008-01-11 修回日期:2008-05-29 出版日期:2009-01-12 网络出版日期:2008-11-17
  • 通讯作者: 何中虎
  • 基金资助:





Identification of 1BL/1RS Translocation Based on Mixograph Parameters in Common Wheat

LIU Jian-Jun1,XIAO Yong-Gui2,CHENG Dun-Gong1,LI Hao-Sheng1,LIU Li2,SONG Jian-Min1,LIU Ai-Feng1,ZHAO Zhen-Dong1,HE Zhong-Hu2,3*   

  1. 1 Crop Research Institute,Shandong Academy of Agricultural Sciences, Jinan 250100, China; 2 Institute of Crop Sciences/National Wheat Improvement Centre/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences,Beijing 100081, China; 3 CIMMYT China Office,Beijing 100081,CHina
  • Received:2008-01-11 Revised:2008-05-29 Published:2009-01-12 Published online:2008-11-17
  • Contact: HE Zhong-Hu
  • Supported by:



1BL/1RS易位系曾广泛用于小麦农艺性状改良,但对加工品质有明显的负面影响。利用404F5F8高代品系(试验I)175份山东省主栽品种及高代品系(试验II),研究1BL/1RS易位对小麦揉面参数的影响,分析不同高低分子量蛋白亚基(HWM/LWM-GS)背景下1BL/1RS的揉面特性,探讨利用揉面特性鉴定1BL/1RS易位系的方法。结果表明,1BL/1RS易位系的揉面时间、峰值带宽及峰后1 min带宽显著低于非1BL/1RS易位系,而衰落角和带宽比(峰值带宽/峰后1 min带宽)显著高于非1BL/1RS易位系,说明1BL/1RS易位导致小麦的揉面特性显著变劣。易位系的揉面谱带的主要特征为峰后1 min谱带急剧衰落并变窄,带宽比显著增大,而1BL/1RS易位系的峰后谱带衰落、变窄平缓或者稳定时间较长,带宽比较小。带宽比1.6可作为判断易位系的有效指标,即大于或等于1.61BL/1RS易位系,小于1.6为非1BL/1RS易位系准确率达85.2%(试验I)96.8%(试验II)尽管优质HWM-GS背景对Glu-B3j(1BL/1RS易位系)的揉面特性有一定正向补偿作用,但品质特性仍显著劣于其他Glu-B3位点,带宽比表现尤为突出。因此,揉面特性不仅能测定育种材料的面团流变学特性,而且还能有效鉴别1BL/1RS易位系。

关键词: 普通小麦, 1BL/1RS易位, 揉面特性


1BL/1RS translocation has been widely used for improving agronomic performance and disease resistance in wheat (Triticum aestivum L.), however, it has strong negative effect on processing quality. To develop a method for 1BL/1RS translocation identification with mixograph parameters, 404 advanced lines from 146 crosses in 2005–2006 (Experiment I) and 175 advanced lines and main cultivars of Shandong Province (Experiment II) in 2005–2006 and 2006–2007 cropping seasons were used in this study. All materials were sown under irrigation condition in a randomized complete design with 1 replication in Jinan. The genetic effect of 1BL/1RS translocation on mixograph parameters was investigated. The variations of mixograph parameters under different combinations of the high molecular weight glutenin subunits (HMW-GS) and low molecular weight glutenin subunits (LMW-GS) were also analyzed. 1BL/1RS translocation lines showed significantly shorter mixing time, less bandwidth of peak and bandwidth after 1 min peak, and higher angle of descent and the bandwidth ratio (the ratio of bandwidth of peak/bandwidth after 1 min peak) in comparison with non-1BL/1RS translocation lines. It indicated that the 1BL/1RS translocation has deleterious effects on mixograph parameters. Mixograph of the 1BL/1RS translocation was characterized with the bandwidth sharply declining and narrowing after 1 min peak, and increasing the bandwidth ratio, whereas the bandwidth of non-1BL/1RS translocations declined gently after 1 min peak or had a longer mixing tolerance, and had a little variation about the bandwidth ratio. Furthermore, 85.2% (Experiment I) and 96.8% (Experiment II) accuracies were achieved in grouping the 1BL/1RS translocation and non-1BL/1RS translocation on the basis of the band width ratio, i.e., 1BL/1RS translocation line had a value more than or equal to 1.6, and non-1BL/1RS translocation line had a value smaller than 1.6. Although the Glu-B3 alleles showed better quality parameters when HMW-GS 5+10 was presented, it was still the most unfavorable allele on mixograph parameters among all Glu-B3 alleles. Therefore, mixograph parameters could be used to determine the rheological properties and the presence of 1BL/1RS translocation.

Key words: Common wheat(Triticum aestivum L.), 1BL/1RS transloeation, Mixogram characteristics

[1]Ehdaie B, Whitkus R W, Waines J G. Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci, 2003, 43: 710–717
[2]Rabinovich S V. Importance of wheat-rye translocation for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998, 100: 323–340
[3]Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jing Z-B(井赵斌), Yu G-J(于广军). Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin (作物学报), 2004, 30(6): 531–535(in Chinese with English abstract)
[4]Liu L(刘丽), Yan J(阎俊), Zhang Y(张艳), He Z-H(何中虎), Pe?a R J, Zhang L-P(张立平). Allelic variation at the Glu-1 and Glu-3 loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from autumn-sown wheat regions in China. Sci Agric Sin (中国农业科学), 2005, 38(10): 1944–1950(in Chinese with English abstract)
[5]Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agric, 2000, 80: 1640–1647
[6]Liu J-J (刘建军), He Z-H(何中虎), Pe?a R J, Zhao Z-D(赵振东). The effects of 1B/1R translocation on grain quality and noodle quality of bread wheat. Acta Agron Sin (作物学报), 2004, 30(2): 149–153(in Chinese with English abstract)
[7]Burnett C J, Lorenz K J, Carver B F. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica, 1995, 86: 159–166
[8]Moreno-Sevilla B, Baenziger P S, Shelton D R, Graybosch R A, Peterson C J. Agronomic performance and end-use quality of 1B vs 1B/1R genotypes derived from the winter wheat “Rawhide”. Crop Sci, 1995, 35: 1607–1612
[9]Martin P, Carrillo J M. Cumulative and interaction effects of prolamin allelic variation and of 1BL/1RS translocation on flour quality in bread wheat. Euphytica, 1999, 108: 29–39
[10]Branlard G, Felix I. Part of the HMW glutenin subunits and omega gliadin allelic variants in the explanation of the quality parameters. In: Martino al Cimino S eds. Proceedings of International Meeting—Wheat Kernel Proteins: Molecular and Functional Aspects, Viterbo, Italy, 1994. pp 249–251
[11]Gianibelli M C, Larroque O R, MacRichie F, Wrigley C W. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 78: 635–646
[12]Bietz J A, Wall J S. Isolation and characterization of gliadin-like subunits from glutenin. Cereal Chem, 1973, 50: 537–547
[13]Gupta R B, MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats: II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci, 1994, 19: 19–29
[14]Branlard G, Dardevet M, Saccomano R, Lagoutte F, Gourdon J. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica, 2001, 119: 59–67
[15]He Z H, Liu L, Xia X C, Liu J J, Pe?a R J. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem, 2005, 82: 345–350
[16]Kolster P, Krechting C F, van Gelder W M J. Quantification of individual high molecular weight subunits of wheat glutenin SDS-PAGE and scanning densitometry. J Cereal Sci, 1992, 15: 49–61
[17]Wang F-C(王凤成), Zhang W(张玮), Chen W-Y(陈万义). Mixograph and its application in the determination of wheat flour quality. Cereal & Feed Ind, 2004, 12: 10–12
[18]Lagudah E S, Appels R, McNeil D. The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome, 1991, 34: 387–395
[19]Francis H A, Leitch A R, Koebner R M D. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636–642
[20]Xiao Y-G(肖永贵), Yan J(阎俊), He Z-H(何中虎), Zhang Y(张勇), Zhang X-K(张晓科), Liu L(刘丽), Li T-F(李天富), Qü Y-Y(曲延英), Xia X-C(夏先春). Effect of 1BL/1RS translocation on yield traits and powdery mildew resistance in common wheat and QTL analysis. Acta Agron Sin (作物学报), 2006, 32(11): 1636–1641(in Chinese with English abstract)
[21]Liu L(刘丽), Zhou Y(周阳), He Z-H(何中虎), Yan J(阎俊), Zhang Y(张艳), Pe?a R J. Effect of allelic variation at Glu-1 and Glu-3 loci on processing quality in common wheat. Acta Agron Sin (作物学报), 2004, 30(11): 959–968(in Chinese with English abstract)
[22]Graybosch R A. Uneasy Unions: Quality effects of rye chromatin transfer to wheat. J Cereal Sci, 2001, 33: 3–16
[23]Fenn D, Lukow O M, Bushuk W, DePauw R M. Milling and baking quality of 1BL/1RS translocation wheat: I. Effects of genotype and environment. Cereal Chem, 1994, 71: 189–195
[24]Zarco-Hernandez J A, Santiveri F, Michelena A, Pe?a R J. Durum wheat (Triticum turgidum L.) carrying the 1BL/1RS chromosomal translocation: agronomic performance and quality characteristics under Mediterranean conditions. Eur J Agron, 2005, 22: 33–43
[25]Finney K F, Shogren M D. A ten-gram mixograph for determining and predicting functional properties of wheat flours. Baker’s Digest, 1972, 46: 32–77
[26]Randall P G, Manley M, McGill A E, Taylor J R N. Relationship between high Mr subunits of glutenin of South African wheats and end-use quality. J Cereal Sci, 1993, 18: 251–258
[27]Lee J H, Graybosch R A, Peterson C J. Quality and biochemical effects of a 1BL/1RS wheat-rye translocation in wheat. Theor Appl Genet, 1995, 90: 105–112
[28]Pe?a R J, Amaya A, Rajaram S, Mujeep-Kazi A. Variation in quality of characteristics associated with some spring 1B/1R translocation wheats. J Cereal Sci, 1990, 12: 105–112
[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[3] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[4] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[5] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[6] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[7] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[8] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[9] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[10] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[11] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[12] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[13] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[14] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[15] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
Full text



No Suggested Reading articles found!