欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 191-202.doi: 10.3724/SP.J.1006.2009.00191

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

我国黄淮和南方主要大豆育成品种家族产量和品质优异等位变异在系谱中遗传的研究

张军12,赵团结1,盖钧镒1*   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2滨州职业学院,山东滨州256603
  • 收稿日期:2008-05-14 修回日期:2008-09-16 出版日期:2009-02-12 网络出版日期:2009-02-12
  • 通讯作者: 盖钧镒
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100104),国家重点基础研究发展规划(973规划)项目(2004CB7206,2006CB101708,2009CB118404),国家自然科学基金资助项目(30490250,30671266),高等学校创新引智计划(B08025)资助

Inheritance of Elite Alleles of Yield and Quality Traits in the Pedigrees of Major cultivar Families Released in Huanghuai Valleys and Southern China

ZHANG Jun12,ZHAO Tuan-Jie1,GAI Jun-YI1*   

  1. 1Soybean Research Institute of Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and germplasm Enhancement, Nanjing 210095, China;2Binzhou Vocational College,Binzhou 256603,China
  • Received:2008-05-14 Revised:2008-09-16 Published:2009-02-12 Published online:2009-02-12
  • Contact: GAI Jun-Yi

摘要:

以往研究育成品种间的遗传关系只能通过系谱追踪进行一般性分析, 分子标记的发掘则提供了在位点及其等位变异基础上分析育成品种间遗传关系的手段。本研究在黄淮和南方190份大豆育成品种的85个SSR标记与农艺性状关联分析基础上, 将其中163份品种按系谱祖先归为58-161、徐豆1号、齐黄1号、南农493-1、南农1138-2五个家族, 对产量和品质性状进行优异等位变异在系谱中传承情况的分析。所涉及的最佳位点, 产量9个、百粒重3个、蛋白质含量2个、脂肪含量4个, 总解释率分别为91%、36%、13%和31%。每位点考查2个最优等位变异, 家族系谱祖先具有各自的优异等位变异, 随着育种轮次的增加在后育成品种中有丢失; 在系谱祖先基础上新品种衍生过程中吸纳其他亲本, 5个家族趋向共有大部分优异等位变异, 但频率分布不同。5个家族的品种所含有产量最多优异等位变异数未达饱和, 9个位点中最高含7个优异等位变异, 平均每个品种2.23个, 产量有进一步改良潜力。供试条件下高产品种平均产量是低产的2.36倍, 平均优异等位变异数是低产的4.17倍, 高、低产品种优异等位变异构成差异明显, 但高产品种间优异等位变异构成并不相同。也有的品种高产而优异等位变异数并不多, 有的品种优异等位变异较多但产量并不高。大豆育种不断从不同亲本中累积目标性状优异等位变异, 同时有些也在丢失, 应重视保存过时品种的优异等位变异, 以备后用。

关键词: 大豆育成品种, 家族系谱, 优异等位变异, 遗传

Abstract:

It is commonly understand that molecular markers have provided an opportunity for plant breeders to trace genetic relationship precisely among released cultivars, while it can be done only roughly through pedigree analysis. In the present study, 163 released soybean cultivars of the five major family pedigrees in Huanghuai Valleys and Southern China, with 58-161, Xudou 1, Qihuang 1, Nannong 493-1, and Nannong 1138-2 as their respective pedigree ancestor, were analyzed for transition of elite alleles of yield and quality traits in each family pedigree based on the association analysis between 85 SSR loci and agronomic traits in 190 released cultivars in the same region. Two best alleles of each of the nine, three, two and four major loci, explaining 91%, 36%, 13%, and 31% of total phenotypic variation of the four traits, respectively, were traced for their transition in the five cultivar pedigrees. It was found that each pedigree ancestor had its own elite alleles which transited to its progenies, but some of them might be lost during the process. The five family pedigrees tended to share all the elite alleles but with different frequency distributions due to diverse parental materials used in the pedigrees. The cultivars in the pedigrees had different number of elite alleles for yield, where the highest elite allele number contained in a cultivar was seven but not the full of 9 and the average was only 2.33, indicating great yield potential in recombination and accumulation of elite alleles for future breeding. Under the experiment conditions, the average yield of high-yielding cultivars was 2.36 times of that of low-yielding cultivars while the average elite allele number of the former was 4.17 times of that of the latter, but the composition of elite alleles among the high-yielding cultivars was quite different. On the other hand, unusual cases of some cultivars with high yield but less elite alleles and some with low yield but more elite alleles were also observed. It is suggested for breeders to conserve carefully the old cultivars for future breeding since they might have some specific elite alleles in their genome.

Key words: Soybean released cultivar, Family pedigree, Elite allele, Inheritance

[1] Board J E, Modali H. Dry matter accumulation predictors for optimal yield in soybean. Crop Sci, 2005, 45: 1790–1799
[2] Yan W K, Rajcan I. Prediction of cultivar performance based on single- versus multiple-year tests in soybean. Crop Sci, 2003, 43: 549–555
[3] Xiong D-J(熊冬金), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Geo-graphical sources of germplasm and their nuclear and cytoplas-mic contribution to soybean cultivars released during 1923 to 2005 in China. Acta Agron Sin (作物学报), 2008, 34(2): 175–183(in Chinese with English abstract)
[4] Zhou X L, Carter Jr T E, Cui Z L, Miyazaki S, Burto J W. Ge-netic diversity patterns in Japanese soybean cultivars based on coefficient of parentage. Crop Sci, 2002, 42: 1331–1342
[5] Cui Z L, Carter Jr T E, Burton J W. Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage. Crop Sci, 2000, 40: 1780–1793
[6] Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177
[7] Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: A high resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054–1064
[8] Ivandic1 V, Hackett C A, Nevo E, Keith R, Thomas W T B, Forster B P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: Associations with ecology, geo- graphy and flowering time. Plant Mol Biol, 2002, 48: 511–527
[9] Wilson L M, Whitt S R, Ibá?ez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 2004, 16: 2719–2733
[10] Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341–356
[11] Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Association analysis of agronomic trait QTLs with SSR markers in released soy-bean cultivars. Acta Agron Sin (作物学报), 2008, 34(12): 1–11(in Chinese with English abstract)
[12] Guan R-X(关荣霞), Guo J-J(郭娟娟), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Marker-based evidence of broadening the genetic base of Chinese soybeans by using introduced soybeans. Acta Agron Sin (作物学报), 2007, 33(9): 1393–1398(in Chinese with English abstract)
[13] Zhang B(张博), Qiu L-J(邱丽娟), Chang R-Z(常汝镇). Diversity comparison and genetic relationship analysis between awarded soybean cultivars and their ancestors in China. J Agric Biotechnol (农业生物技术学报), 2003, 11(4): 351–358(in Chinese with English abstract)
[14] Qin J(秦君), Chen W-Y(陈维元), Guan R-X(关荣霞), Jiang C-X(姜成喜), Li Y-H(李英惠), Fu Y-S(付亚书), Liu Z-X(刘章雄), Zhang M-C(张孟臣), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Genetic contribution of foreign germplasm to elite Chinese soy-bean (Glycine max) cultivars revealed by SSR markers. Chin Sci Bull (科学通报), 2006, 51(6): 686–692(in Chinese)
[15] Fu Y B, Peterson G W, Scoles G, Rossnagel B, Schoen D J, Richards K W. Allelic diversity changes in 96 Canadian oat culti-vars released from 1886 to 2001. Crop Sci, 2003, 43: 1989–1995
[16] Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H P, Bohn M, Melchinger A E. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet, 2005, 111: 838–845
[17] Fu Y B, Peterson G W, Richards K W, Somers D, DePauw R M, Clarke J M. Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004. Theor Appl Genet, 2005, 110: 1505–1516
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[4] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[5] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[6] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[9] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[10] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[11] 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019.
[12] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[13] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
[14] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[15] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!