作物学报 ›› 2009, Vol. 35 ›› Issue (5): 809-815.doi: 10.3724/SP.J.1006.2009.00809
郭志鸿1,王亚军1,张金文2,张玉宝1,王金牛1,谢忠奎1,*,陈正华3
GUO Zhi-Hong1,WANG Ya-Jun1,ZHANG Jin-Wen2,ZHANG Yu-Bao1,WANG Jin-Niu1,XIE Zhong-Kui1*,CHEN ZHeng-Hua3
摘要:
采用PCR技术分别克隆nos终止子、烟草axi1内含子和烟草ubi.u4启动子,亚克隆部分与马铃薯Sbe1同源、部分与Sbe2同源的融合基因SIII,构建具有“ubi.u4启动子—反向SIII—反向nos终止子—axi1内含子—正向nos终止子”结构的异源3¢端UTR反向重复序列型RNAi载体pCUSNI,采用农杆菌介导法转化马铃薯品种陇薯3号、甘农薯2号和大西洋,获得了16个转基因植株,其中14个的块茎直链淀粉含量大幅度增加,表观直链淀粉含量介于53.80%~85.33%;但随着直链淀粉含量的升高,转基因马铃薯淀粉含量下降。半定量RT-PCR分析表明,在直链淀粉含量超过80%的转基因株系中检测不到Sbe1和Sbe2基因mRNA的积累。结果表明,异源3¢端UTR反向重复序列型RNAi载体pCUSNI能够高频、高效地同时抑制马铃薯Sbe1和Sbe2基因的表达,是一个优良的RNAi载体。以载体pCUSNI为基础,再以植物的其他基因为靶,只需在pCUSNI的BamH I和Sac I位点之间插入干涉片段替换SIII即可完成载体构建,而不必构建靶标基因的反向重复序列,使载体制备迅速便捷。
[1] Waterhouse P M, Helliwell C A. Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet, 2002, 4: 29–38 [2] Louisa M. RNAi for plant functional genomics. Comparative Funct Genom, 2004, 5: 240–244 [3] Ogita S, Uefuji H, Yamguchi Y, Koizumi N, Samo H. Producing decaffeinated coffee plants. Nature, 2003, 423: 823 [4] Kusaba M, Miyahara K, Lida S, Fukuoka H, Takario T Sassa H, Nishimura M Nishio T. Low glutenin content 1: A dominant mutation that suppresses the glutenin multigene family via RNA silencing in rice. Plant Cell, 2003, 15: 1455–1467 [5] Wang M, Abbott D, Waterhouse P M. A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol, 2000, 1: 401–410 [6] Dalmay T, Hamilton A J, Rudd S, Angell S, Baulcombe D C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a tansgene but not by a virus. Cell, 2000, 101: 543–553 [7] Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286: 950–925 [8] Han Y, Grierson D. Relationship between small antisense RNAs and aberrant RNAs associated with sense transgene mediated gene silencing in tomato. Plant J, 2002, 29: 509–519 [9] Sijen T, Fleenor J, Simmer F, Thijssen K L, Parrish S, Timmons L, PlasterK R H A, Fire A. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 2001, 107: 465–476 [10] Fernie A R, Willmitzer L, Trethewey N R. Sucrose to starch: transition in molecular plant physiology. Trends Plant Sci, 2002, 7: 35–41 [11] Safford R, Jobling S A, Sidebottom C, Westcott R J, Cooke D, Tober K J, Strongitharm B H, Russell A L, Gidley M J. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of starch. Carbohydrate Polymers, 1998, 35: 155–168 [12] Jobling S A, Schwall G P, Westcott R J, Sidebottom C M, Debet M, Gidley M J, Jeffcoat R, Safford R. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterization of multiple forms of SBE A. Plant J, 1999, 18: 163–171 [13] Schwall G P, Safford R, Westcott R J, Jeffcoat R, Tayal A, Shi Y, Gidley M J, Jobling S A. Production of very- high-amylose potato starch by inhibition of SBE A and B. Nat Biotechnol, 2000, 18: 551–554 [14] Hofvander P, Andersson M, Larsson C T, Larsson H. Field performance and starch characteristics of high-amylose potatoes obtained by antisense gene targeting of two branching enzymes. Plant Biotechnol J, 2004, 2: 311–320 [15] Guo Z-H(郭志鸿), Zhang J-W(张金文), Wang D(王蒂), Chen Z-H(陈正华). Using RNAi technology to produce high-amylose potato plants. Sci Agric Sin (中国农业科学), 2008, 41(2):494–501 (in Chinese with English abstract) [16] Kang T J, Kwon T H, Kim T G, Loc N H, Yang M S. Comparing constitutive promoters using CAT activity in transgenic tobacco plants. Mol Cells, 2003, 16: 117–122 [17] Wang G-L(王关林), Fang H-J(方宏筠). Plant Gene Engineering (植物基因工程), 2nd ed. Beijing: Science Press, 2002. pp 776–777(in Chinese) [18] Paul H, Marja S R, Evert J and Richard G F V. Transformation of a large number of varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica, 2002, 124: 13–22 [19] Murray M G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucl Acids Res, 1980, 8: 4321–4325 [20] Chen Y-Q(陈毓荃). Mothods and Technologies of Biochemistry Experiment (生物化学实验方法和技术). Beijing: Scientific Press, 2002. pp 175–178(in Chinese) |
[1] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
[2] | 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052. |
[3] | 王莎,贺勇,罗光宇,姚敏,张旭,陈信波,周小云. OsWR2-RNAi对水稻角质层生物合成和耐旱性的影响[J]. 作物学报, 2017, 43(03): 315-323. |
[4] | 杨向东,牛陆,张伟,杨静,杜茜,邢国杰,郭东全,李启云,董英山*. RNAi介导SMV-P3基因沉默增强大豆对花叶病毒病的抗性[J]. 作物学报, 2016, 42(11): 1647-1655. |
[5] | 任琴,王亚军,郭志鸿,李继平,谢忠奎,王若愚,王立,惠娜娜. 植物介导的RNA干扰引起马铃薯晚疫病菌基因的沉默[J]. 作物学报, 2015, 41(06): 881-888. |
[6] | 叶艳英,曾钢,曹鸣庆,马荣才,吴才君,姚磊. HC-Pro基因片段介导的高抗TuMV[J]. 作物学报, 2014, 40(03): 550-555. |
[7] | 陈现朝,黄立钰,周永力. 水稻类受体激酶基因OsBAK1L调控细胞坏死机制分析[J]. 作物学报, 2013, 39(11): 1992-1999. |
[8] | 章洁琼,李红艳,胡小南,单志慧,唐桂香. 农杆菌介导的RNAi CP基因在大豆中的转化[J]. 作物学报, 2013, 39(09): 1594-1601. |
[9] | 刘光快,曹珍珍,韦克苏,潘刚,苏达,张春娇,程方民. 水稻蛋白二硫键异构酶基因沉默载体构建及其转基因后代的高温结实特性分析[J]. 作物学报, 2013, 39(05): 816-826. |
[10] | 刘玉汇,王丽,杨宏羽,余斌,李元铭,张俊莲,王蒂. 马铃薯块茎颗粒结合型淀粉合酶基因的克隆及其RNAi载体的构建[J]. 作物学报, 2012, 38(07): 1187-1195. |
[11] | 王坚,赵开军,乔枫,杨生龙. OsGA20ox2不同长度RNAi片段对水稻株高等农艺性状的遗传效应[J]. 作物学报, 2012, 38(04): 632-638. |
[12] | 王旺田, 张金文, 王蒂, 张俊莲, 司怀军, 陶士珩. 马铃薯块茎糖基转移酶基因的克隆及其RNAi载体的构建[J]. 作物学报, 2011, 37(11): 1926-1934. |
[13] | 秦智慧,晁跃辉,杨青川,康俊梅,孙彦,王凭青,龙瑞才. 紫花苜蓿锌指蛋白基因RNAi表达载体的构建及在苜蓿的转化[J]. 作物学报, 2010, 36(4): 596-601. |
|