作物学报 ›› 2009, Vol. 35 ›› Issue (5): 802-808.doi: 10.3724/SP.J.1006.2009.00802
荣小营1,朱利泉1,*,王 永1,高启国2,陈晓丹1,杨洋2,王小佳2
RONG Xiao-Ying1,ZHU Li-Quan1*,WANG Yong1,GAO Qi-Guo2,CHEN Xiao-Dan1,YANG Yang2,WANG Xiao-Jia2
摘要:
利用FISH技术, 对自交不亲和基因MLPK与SSP在甘蓝有丝分裂前中期染色体、减数分裂早粗线期染色体以及伸长DNA纤维等3种分辨率水平的靶DNA载体上进行物理定位。结果表明, 在有丝分裂前中期, MLPK探针信号位于一对近中着丝粒同源染色体的短臂中部, 距着丝粒的百分距离约为53.41±3.16;SSP探针信号位于一对具有随体的近端着丝粒同源染色体的长臂端部, 距着丝粒的百分距离约为78.36±4.26。综合3种载体上的FISH结果表明, MLPK与SSP在甘蓝染色体组中可能都只有一个同源序列座位, 具有在单倍体基因组中的单拷贝性。重复FISH杂交表明, MLPK与5S rDNA位于同一对染色体。依据Armstrong的核型分析标准, 初步判断MLPK与SSP分别位于甘蓝的2号和7号染色体, 与S位点不存在连锁关系。另从比较基因组学角度对定位结果进行了讨论。
[1] Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA, 1991, 88: 8816–8820 [2] Goring D R, Rothstein S J. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell, 1992, 4: 1273–1281 [3] Takayama S, Shiba H, Iwano M, Shimosato H, Che F S, Watanabe M, Suzuki G, Hinata K, Isogai A. The pollen determinant of self-incompatibility in Brassica campestris. Proc Natl Acad Sci USA, 2000, 97: 1920–1925 [4] Boyes D C, Nasrallah M E, Vrebalov J, Nasrallah J B. The self-incompatibility (S) haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin. Plant Cell, 1997, 9: 237–247 [5] Gu T S, Mazzurco M, Sulaman W, Matias D D, Goring D R. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci USA, 1998, 95: 382–387 [6] Cabrillac D, Cock J M, Dumas C, Gaude T. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature, 2001, 410: 220–223 [7] Goring D R, Walker J C. Self-rejection — A new kinase connection. Science, 2004, 303: 1474–1475 [8] Murase K, Shiba H, Iwano M, Che F S, Watanabe M, Isogai A, Takayama S. A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science, 2004, 303: 1516–1519 [9] Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa. Plant Cell, 2007, 19: 3961–3973 [10] Wu N-B(吴能表). Study on evocable protein phosphorylation and correlative characters in the self-incompatible of Brassica oleracea L. PhD Dissertation of Southwest Agricultural University, 2003. pp 51–52(in Chinese with English abstract) [11] Zhao Y-B(赵永斌), ZHU L-Q(朱利泉). Cloning and sequences analysis of SRK substrate protein gene from Brassica oleracea. Acta Agric Boreali-occident Sin (西北农业学报), 2007, 16(6): 102–106(in Chinese with English abstract) [12] Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen W K, Maluszynska J. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot, 2006, 97: 205–216 [13] Chen R-Y(陈瑞阳), Song W-Q(宋文芹), Li X-L(李秀兰). Wall degradation hypotonic methed of preparing chromosome sample in plant and its significance in the cytogenetics, Acta Genet Sin (遗传学报), 1982, 9(2): 151–159(in Chinese with English abstract) [14] Zhong X-B(钟筱波), Fransz P F, Wennekes J, Kammen A, De Jong J H, Zabel P. Fluorescence in situ hybridization to pachytene chromosomes and extended DNA fibres in plants. Acta Genet Sin (遗传学报), 1998, 25(2): 142–149(in Chinese with English abstract) [15] Yang K, Qi H Y, Zhu L Q, Wang X J. Localization of S genes on extended DNA fibers (EDFs) in Brassica oleracea by high-resolution FISH. Acta Genet Sin, 2006, 33(3): 277–284 [16] Zhao Y-B赵永斌), Zhu L-Q(朱利泉), Wang X-J(王小佳). Cloning and sequences analysis of M-locus protein kinase gene from Brassica oleracea. Acta Agron Sin (作物学报), 2006, 32(1): 46–50(in Chinese with English abstract) [17] Cheng Z K, Buell C R, Wing R A, Jiang J M. Resolution of fluorescence in situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chrom Res, 2002, 10: 379–387 [18] Armstrong S J, Fransz P, Marshall D F, Jones G H. Physical mapping of DNA repetitive sequences to mitotic and meiotic chromosomes of Brassica oleracea var. alboglabra by fluorescence in situ hybridization. Heredity, 1998, 81: 666–673 [19] Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet, 2003, 107: 168–180 [20] Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics, 2006, 173: 309–319 [21] Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003, 164: 359–372 [22] Howell E C, Barker G C, Jones G H, Kearsey M J, King G J, Kop E P, Ryder C D, Teakle G R, Vicente J G, Armstrong S J. Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics, 2002, 161: 1225–1234 [23] Wang C J R, Harper L, Cande W Z. High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell, 2006, 18: 529–544 [24] Kamisugi Y, Nakayama S, O’Neil C M, Mathias R J, Trick M, Fukui K. Visualization of the Brassica self-incompatibility S-locus on identified oilseed rape chromosomes. Plant Mol Biol, 1998, 38: 1081–1087 [25] Van De Rijke F M, Florijn R J, Tanke H J, Raap A K. DNA fiber-FISH staining mechanism. J Histochem Cytochem, 2000, 48: 743–745 [26] Stone S L, Anderson E M, Mullen R T, Goring DR. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell, 2003, 15: 885–898 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|