作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1152-1168.doi: 10.3724/SP.J.1006.2022.14003
张以忠1,2(), 曾文艺1, 邓琳琼2, 张贺翠1, 刘倩莹1, 左同鸿1, 谢琴琴1, 胡燈科1, 袁崇墨1, 廉小平1, 朱利泉1,*()
ZHANG Yi-Zhong1,2(), ZENG Wen-Yi1, DENG Lin-Qiong2, ZHANG He-Cui1, LIU Qian-Ying1, ZUO Tong-Hong1, XIE Qin-Qin1, HU Deng-Ke1, YUAN Chong-Mo1, LIAN Xiao-Ping1, ZHU Li-Quan1,*()
摘要:
S位点是芸薹属植物自交不亲和反应的关键位点, 控制自交不亲和反应的识别与启动。为明确甘蓝S位点基因SRK和SLG的S域和SP11/SCR编码序列密码子的使用特性, 利用Codon W、SPSS软件、Python程序和EMBOSS在线程序分析甘蓝41个SRK、36个SLG和11个SP11/SCR等位基因的偏好性, 同时通过中性绘图、ENC-GC3绘图、PR2绘图及多元统计分析探讨基因密码子偏好性形成原因, 并利用不同方法对其进行聚类分析。结果表明, 甘蓝SRK、SLG和SP11/SCR基因编码序列富含A/T, 密码子偏好以A/T碱基结尾, 偏好性较低。自然选择是影响密码子使用模式的主要因素, 突变压力为次要因素, 还受到二核苷酸丰度的影响。根据RSCU值发现, SRK和SLG基因高表现密码子有4个, SP11/SCR基因有11个。基于RSCU的聚类能够较准确地反应甘蓝SRK、SLG和SP11/SCR等位基因间的关系, 并与基于CDS核酸序列的聚类具有一致性和可靠性。根据密码子使用偏好性和聚类关系发现, SRK的S域和SP11/SCR编码序列在密码子偏好性上可能是协同进化的。这为更好理解甘蓝中密码子的分布机制和SRK、SLG和SP11/SCR基因的进化提供新内容。
[1] |
Chamary J V, Parmley J L, Hurst L D. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet, 2006, 7:98-108.
pmid: 16418745 |
[2] |
Plotkin J B, Dushoff J, Desai M M, Fraser H B. Codon usage and selection on proteins. J Mol Evol, 2006, 63:635-653.
pmid: 17043750 |
[3] |
Plotkin J B, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet, 2011, 12:32-42.
doi: 10.1038/nrg2899 pmid: 21102527 |
[4] |
Bulmer M G. The selection-mutation-drift theory of synonymous codon usage. Genetics, 1991, 129:897-907.
doi: 10.1093/genetics/129.3.897 pmid: 1752426 |
[5] |
Hershberg R, Petrov D A. Selection on codon bias. Annu Rev Genet, 2008, 42:287-299.
doi: 10.1146/annurev.genet.42.110807.091442 pmid: 18983258 |
[6] | 张乐, 金龙国, 罗玲, 王跃平, 董志敏, 孙守红, 邱丽娟. 大豆基因组和转录组的核基因密码子使用偏好性分析. 作物学报, 2011, 37:965-974. |
Zhang L, Jin L G, Luo L, Wang Y P, Dong Z M, Sun S H, Qiu L J. Analysis of nuclear gene codon bias on soybean genome and transcriptome. Acta Agron Sin, 2011, 37:965-974 (in Chinese with English abstract). | |
[7] |
寇莹莹, 宋英今, 杨少辉, 王洁华. 植酸酶phyA基因的密码子优化及其在大豆中的表达. 作物学报, 2016, 42:1798-1804.
doi: 10.3724/SP.J.1006.2016.01798 |
Kou Y Y, Song Y J, Yang S H, Wang J H. Codon optimization and expression of phyA gene in soybean(Glycine max Merr.). Acta Agron Sin, 2016, 42:1798-1804 (in Chinese with English abstract). | |
[8] |
Tao P, Dai L, Luo M, Tang F, Tien P, Pan Z. Analysis of synonymous codon usage in classical swine fever virus. Virus Genes, 2009, 38:104-112.
doi: 10.1007/s11262-008-0296-z pmid: 18958611 |
[9] |
Wu Y, Zhao D, Tao J. Analysis of codon usage patterns in Herbaceous Peony (Paeonia lactiflora Pall.) based on transcriptome data. Genes, 2015, 6:1125-1139.
doi: 10.3390/genes6041125 |
[10] |
Yan Z, Wang R, Zhang L, Shen B, Wang N, Xu Q, He W, He W, Li G, Su S. Evolutionary changes of the novel influenza D virus hemagglutinin-esterase fusion gene revealed by the codon usage pattern. Virulence, 2019, 10:1-9.
doi: 10.1080/21505594.2018.1551708 |
[11] |
Liu Y S, Zhou J H, Chen H T, Ma L N, Pejsak Z, Ding Y Z, Zhang J. The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. Infect Genet Evol, 2011, 11:1168-1173.
doi: 10.1016/j.meegid.2011.02.018 |
[12] | Ma J J, Zhao F, Zhang J, Zhou J H, Ma L N, Ding Y Z, Chen H T, Gu Y X, Liu Y S. Analysis of synonymous codon usage in dengue viruses. J Anim Vet Adv, 2013, 12:88-98. |
[13] |
Moratorio G, Iriarte A, Moreno P, Musto H, Cristina J. A detailed comparative analysis on the overall codon usage patterns in West Nile virus. Infect Genet Evol, 2013, 14:396-400.
doi: 10.1016/j.meegid.2013.01.001 pmid: 23333335 |
[14] |
Seligmann H, Warthi G. Genetic code optimization for cotranslational protein folding: codon directional asymmetry correlates with antiparallel betasheets, tRNA synthetase classes. Comput Struct Biotechnol J, 2017, 15:412-424.
doi: 10.1016/j.csbj.2017.08.001 |
[15] |
Ahn I, Jeong B J, Bae S E, Jung J, Son H S. Genomic analysis of influenza A viruses, including avian flu (H5N1) strains. Eur J Epidemiol, 2006, 21:511-519.
doi: 10.1007/s10654-006-9031-z |
[16] |
Angellotti M C, Bhuiyan S B, Chen G, Wan X F. Codon O: Codon usage bias analysis within and across genomes. Nucleic Acids Res, 2007, 35:132-136.
pmid: 17537810 |
[17] |
Lu H, Zhao W M, Zheng Y, Wang H, Qi M, Yu X P. Analysis of synonymous codon usage bias in Chlamydia. Acta Biochim Biophys Sin(Shanghai), 2005, 37:1-10.
doi: 10.1093/abbs/37.1.1 |
[18] |
Boël G, Letso R, Neely H, Price W N, Wong K H, Su M, Luff J D, Valecha M, Everett J K, Acton T B, Xiao R, Montelione G T, Aalberts D P, Hunt J F. Codon influence on protein expression in E. coli correlates with mRNA levels. Nature, 2016, 529:358-363.
doi: 10.1038/nature16509 |
[19] |
Yan X, Hoek T A, Vale R D, Tanenbaum M E. Dynamics of translation of single mRNA molecules in vivo. Cell, 2016, 165:976-989.
doi: 10.1016/j.cell.2016.04.034 |
[20] |
Hanson G, Coller J. Translation and protein quality control: codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol, 2018, 19:20-30.
doi: 10.1038/nrm.2017.91 |
[21] |
Pan L L, Wang Y, Hu J H, Ding Z T, Li C. Analysis of codon use features of stearoyl-acyl carrier protein desaturase gene in Camellia sinensis. J Theor Biol, 2013, 334:80-86.
doi: 10.1016/j.jtbi.2013.06.006 |
[22] |
Pek H B, Klement M, Ang K S, Chung B K, Ow D S, Lee D Y. Exploring codon context bias for synthetic gene design of a thermostable invertase in Escherichia coli. Enzyme Microbial Technol, 2015, 75/76:57-63.
doi: 10.1016/j.enzmictec.2015.04.008 |
[23] |
Schopfer C R, Nasrallah M E, Nasrallah J B. The male determinant of self-incompatibility in Brassica. Science, 1999, 286:1697-1700.
pmid: 10576728 |
[24] |
Takayama S, Shimosato H, Shiba H, Funato M, Che F S, Watanabe M, Iwano M, Isogai A. Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature, 2001, 413:534-538.
doi: 10.1038/35097104 |
[25] |
Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA, 1991, 88:8816-8820.
doi: 10.1073/pnas.88.19.8816 |
[26] |
Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403:913-916.
doi: 10.1038/35002628 |
[27] |
Stein J C, Nasrallah J B. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. Plant Physiol, 1993, 101:1103-1106.
doi: 10.1104/pp.101.3.1103 pmid: 8310048 |
[28] |
Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che F S, Watanabe M, Isogai A, Takayama S. Characterization of the SP11/SCR high affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell, 2007, 19:107-117.
pmid: 17220204 |
[29] |
Nasrallah J B, Yu S M, Nasrallah M E. Self-incompatibility genes of Brassica oleracea: expression, isolation, and structure. Proc Natl Acad Sci USA, 1988, 85:5551-5555.
doi: 10.1073/pnas.85.15.5551 |
[30] |
Kusaba M, Nishio T. Comparative analysis of S haplotypes with very similar SLG alleles in Brassica rapa and Brassica oleracea. Plant J, 1999, 17:83-91.
pmid: 10069069 |
[31] |
Dixit R, Nasrallah M E, Nasrallah J B. Post-transcriptional maturation of the S receptor kinase of Brassica correlates with co-expression of the S-locus glycoprotein in the stigmas of two Brassica strains and in transgenic tobacco plants. Plant Physiol, 2000, 124:297-311.
pmid: 10982444 |
[32] |
Silva N F, Stone S L, Christie L N, Sulaman W, Nazarian K A P, Burnett L A, Arnoldo M A, Rothstein S J, Goring D R. Expression of the S receptor kinase in self-compatible Brassica napus cv. Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol Genet Genomics, 2001, 265:552-559.
pmid: 11405639 |
[33] |
Nasrallah J B, Nishio T, Nasrallah M E. The self-incompatibility genes of Brassica: expression and use in genetic ablation of floral tissues. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:393-422.
doi: 10.1146/arplant.1991.42.issue-1 |
[34] |
Ma R, Han Z F, Hu Z H, Lin G Z, Gong X Q, Zhang H Q, Nasrallah J B, Chai J J. Structural basis for specific self-incompatibility response in Brassica. Cell Res, 2016, 26:1320-1329.
doi: 10.1038/cr.2016.129 |
[35] |
Sato K, Nishio T, Kimura R, Kusaba M, Suzuki T, Hatakeyama K, Ockendon D J, Satta Y. Coevolution of the S-Locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics, 2002, 162:931-940.
doi: 10.1093/genetics/162.2.931 |
[36] |
Kim D S, Kim S. Identification of the S locus core sequences determining self-incompatibility and S multigene family from draft genome sequences of radish (Raphanus sativus L.). Euphytica, 2018, 214:16.
doi: 10.1007/s10681-017-2101-3 |
[37] |
Sharp P M, Li W H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol, 1986, 24:28-38.
pmid: 3104616 |
[38] |
Nasrullah I, Butt A M, Tahir S, Idrees M, Tong Y G. Genomic analysis of codon usage shows influence of mutation pressure, natural selection, and host features on Marburg virus evolution. BMC Evol Biol, 2015, 15:174.
doi: 10.1186/s12862-015-0456-4 pmid: 26306510 |
[39] | Wang L Y, Xing H X, Yuan Y C, Wang X L, Saeed M, Tao J C, Feng W, Zhang G H, Song X L, Sun X Z. Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS One, 2018, 13:e0194372. |
[40] |
Wong E H, Smith D K, Rabadan R, Peiris M, Poon L L. Codon usage bias and the evolution of influenza A viruses. codon usage biases of influenza virus. BMC Evol Biol, 2010, 10:253.
doi: 10.1186/1471-2148-10-253 |
[41] |
Singh R K, Pandey S P. Phylogenetic and evolutionary analysis of plant ARGONAUTES. Methods Mol Biol, 2017, 1640:267-294.
doi: 10.1007/978-1-4939-7165-7_20 pmid: 28608350 |
[42] |
Taylor T L, Dimitrov K M, Afonso C L. Genome-wide analysis reveals class and gene specific codon usage adaptation in avian paramyxoviruses 1. Infect Genet Evol, 2017, 50:28-37.
doi: S1567-1348(17)30046-1 pmid: 28189889 |
[43] |
Wright F. The ‘effective number of codons’ used in a gene. Gene, 1990, 87:23-29.
pmid: 2110097 |
[44] |
Comeron J M, Aguade M. An evaluation of measures of synonymous codon usage bias. J Mol Evol, 1998, 47:268-274.
pmid: 9732453 |
[45] |
Liu Q, Feng Y, Zhao X, Dong H, Xue Q. Synonymous codon usage bias in Oryza sativa. Plant Sci, 2004, 167:101-105.
doi: 10.1016/j.plantsci.2004.03.003 |
[46] |
Sueoka N. Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA, 1988, 85:2653-2657.
doi: 10.1073/pnas.85.8.2653 |
[47] | 吴彦庆, 赵大球, 陶俊. 芍药花色调控基因的密码子使用模式及其影响因素分析. 中国农业科学, 2016, 49:2368-2378. |
Wu Y Q, Zhao D Q, Tao J. Analysis of codon usage pattern of Paeonia lactiflora genes regulating flower color and its influence factors. Sci Agric Sin, 2016, 49:2368-2378 (in Chinese with English abstract). | |
[48] |
Chakraborty S, Deb B, Barbhuiya P A, Uddin A. Analysis of codon usage patterns and influencing factors in Nipah virus. Virus Res, 2019, 263:129-138.
doi: S0168-1702(18)30756-1 pmid: 30664908 |
[49] |
Sueoka N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol, 1995, 40:318-325.
pmid: 7723058 |
[50] |
Sueoka N. Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene, 1999, 238:53-58.
doi: 10.1016/S0378-1119(99)00320-0 |
[51] |
He Z, Gan H F, Liang X Y. Analysis of synonymous codon usage bias in potato virus M and its adaption to hosts. Viruses, 2019, 11:752.
doi: 10.3390/v11080752 |
[52] |
Paul P, Malakar A K, Chakraborty S. Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes. Food Sci Biotechnol, 2018, 27:725-733.
doi: 10.1007/s10068-017-0285-x |
[53] |
Kumar N, Kulkarni D D, Lee B, Kaushik R, Bhatia S, Sood R, Pateriya A K, Bhat S, Singh V P. Evolution of codon usage bias in henipaviruses is governed by natural selection and is host- specific. Viruses, 2018, 10:64.
doi: 10.3390/v10020064 |
[54] |
Liu X S, Zhang Y G, Fang Y Z, Wang Y L. Patterns and influencing factor of synonymous codon usage in porcine circovirus. Virol J, 2012, 9:68.
doi: 10.1186/1743-422X-9-68 |
[55] |
Brule C E, Grayhack E J. Synonymous codons: choose wisely for expression. Trends Genet, 2017, 33:283-297.
doi: 10.1016/j.tig.2017.02.001 |
[56] |
Bellgard M, Schibeci D, Trifonov E, Gojobori T. Early detection of G+C differences in bacterial species inferred from the comparative analysis of the two completely sequenced Helicobacter pylori strains. J Mol Evol, 2001, 53:465-468.
pmid: 11675606 |
[57] | Zhou J H, Ding Y Z, He Y, Chu Y F, Zhao P, Zhao P, Ma L Y, Wang X J, Li X R, Liu Y S. The effect of multiple evolutionary selections on synonymous codon usage of genes in the Mycoplasma bovis genome. PLoS One, 2014, 9:e108949. |
[58] |
Murray E E, Lotzer J, Eberle M. Codon usage in plant genes. Nucleic Acids Res, 1989, 17:477-498.
pmid: 2644621 |
[59] | Kawabe A. Miyashita N T. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst, 2003, 78:342-352. |
[60] |
Uddin A, Paul N, Chakraborty S. The codon usage pattern of genes involved in ovarian cancer. Ann N Y Acad Sci, 2019, 1440:67-78.
doi: 10.1111/nyas.2019.1440.issue-1 |
[61] |
Luo W, Tian L, Gan Y D, Chen E L, Shen X J, Pan J B, Irwin D M, Chen R A, Shen Y Y. The fit of codon usage of human- isolated avian influenza A viruses to human. Infection,Genet Evol, 2020, 81:104181.
doi: 10.1016/j.meegid.2020.104181 |
[62] |
Yu X L, Liu J X, Li H Z, Liu B Y, Zhao B Q, Ning Z Y. Comprehensive analysis of synonymous codon usage bias for complete genomes and E2 gene of atypical porcine pestivirus. Biochem Genet, 2021, 59:799-812.
doi: 10.1007/s10528-021-10037-y |
[63] |
Yu X L, Liu J X, Li H Z, Liu B Y, Zhao B Q, Ning Z Y. Comprehensive analysis of synonymous codon usage patterns and influencing factors of porcine epidemic diarrhea virus. Arch Virol, 2021, 166:157-165.
doi: 10.1007/s00705-020-04857-3 |
[64] | Butt A M, Nasrullah I, Qamar R, Tong Y. Evolution of codon usage in Zika virus genomes is host and vector specific. Emerg Microbes Infect, 2016, 5:e107. |
[65] | Kumar N, Bera B C, Greenbaum B D, Bhatia S, Sood R, Selvaraj P, Anand T, Tripathi B N, Virmani N. Revelation of influencing factors in overall codon usage bias of equine influenza viruses. PLoS One, 2016, 11:e0154376. |
[66] |
Wang X, Xu W H, Fan K W, Chiu H C, Huang C Q. Codon usage bias in the H gene of canine distemper virus. Microbial Pathog, 2020, 149:104511.
doi: 10.1016/j.micpath.2020.104511 |
[67] |
Chen Y, Shi Y, Deng H, Gu T, Xu J, Ou J, Jiang Z, Jiao Y, Zou T, Wang C. Characterization of the porcine epidemic diarrhea virus codon usage bias. Infect Genet Evol, 2014, 28:95-100.
doi: 10.1016/j.meegid.2014.09.004 pmid: 25239728 |
[68] |
Zhang X, Cai Y, Zhai X, Liu J, Zhao W, Ji S, Su S, Zhou J. Comprehensive analysis of codon usage on rabies virus and other lyssaviruses. Int J Mol Sci, 2018, 19:2397.
doi: 10.3390/ijms19082397 |
[69] |
Cristina J, Fajardo A, Soñora M, Moratorio G, Musto H. A detailed comparative analysis of codon usage bias in Zika virus. Virus Res, 2016, 223:147-152.
doi: 10.1016/j.virusres.2016.06.022 pmid: 27449601 |
[70] |
Deb B, Uddin A, Chakraborty S. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae. Arch Virol, 2021, 166:461-474.
doi: 10.1007/s00705-020-04890-2 |
[71] |
Zhang W J, Jie Z, Li Z F, Wang L, Xun G, Zhong Y. Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear genes in Triticum aestivum L. J Integr Plant Biol, 2007, 49:246-254.
doi: 10.1111/jipb.2007.49.issue-2 |
[72] |
Liu X Y, Li Y, Ji K K, Zhu J, Ling P, Zhou T, Fan L Y, Xie S Q. Genome-wide codon usage pattern analysis reveals the correlation between codon usage bias and gene expression in Cuscuta australis. Genomics, 2020, 112:2695-2702.
doi: 10.1016/j.ygeno.2020.03.002 |
[73] | Chen H X, Sun S C, Norenburg J L, Sundberg P. Mutation and selection cause codon usage and bias in mitochondrial genomes of ribbon worms (Nemertea). PLoS One, 2014, 9:e85631. |
[74] |
Bera B C, Virmani N, Kumar N, Anand T, Pavulraj S, Rash A, Elton D, Rash N, Bhatia S, Sood R, Singh R K, Tripathi B N. Genetic and codon usage bias analyses of polymerase genes of equine influenza virus and its relation to evolution. BMC Genomics, 2017, 18:652.
doi: 10.1186/s12864-017-4063-1 |
[75] |
De Amicis F, Marchetti S. Intercodon dinucleotides affect codon choice in plant genes. Nucleic Acids Res, 2000, 28:3339-3345.
pmid: 10954603 |
[76] |
Sharp P M, Cowe E, Higgins D G, Shields D C, Wolfe K H, Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: a review of the considerable within species diversity. Nucleic Acids Res, 1988, 16:8207-8211.
pmid: 3138659 |
[77] |
Zhou H, Wang H, Huang I F, Naylor M, Clifford P. Heterogeneity in codon usages of sobemovirus genes. Arch Virol, 2005, 150:1591-1605.
doi: 10.1007/s00705-005-0510-4 pmid: 15834656 |
[78] |
Miwa H, Odrzykoski I J, Matsui A, Hasegawa M, Murakami N. Adaptive evolution of rbcL in Conocephalum (Hepaticae, bryophytes). Gene, 2009, 441:169-175.
doi: 10.1016/j.gene.2008.11.020 |
[79] |
Zhao Y C, Zheng H, Xu A Y, Yan D, H Jiang Z J, Qi Q, Sun J C. Analysis of codon usage bias of envelope glycoprotein genes in nuclear polyhedrosis virus (NPV) and its relation to evolution. BMC Genomics, 2016, 17:677.
doi: 10.1186/s12864-016-3021-7 |
[80] |
Christianson M. Codon usage patterns distort phylogenies from or of DNA sequences. Am J Bot, 2005, 92:1221-1233.
doi: 10.3732/ajb.92.8.1221 pmid: 21646144 |
[81] |
Liu H, He R, Zhang H, Huang Y, Tian M, Zhang J. Analysis of synonymous codon usage in Zea mays. Mol Biol Rep, 2010, 37:677-684.
doi: 10.1007/s11033-009-9521-7 |
[82] |
Fraser H B, Hirsh A E, Wall D P, Eisen M B. Coevolution of gene expression among interacting proteins. Proc Natl Acad Sci USA, 2004, 101:9033-9038.
doi: 10.1073/pnas.0402591101 |
[83] |
朱利泉, 周燕. 甘蓝自交不亲和性信号传导元件与传导过程. 作物学报, 2015, 41:1-14.
doi: 10.3724/SP.J.1006.2015.00001 |
Zhu L Q, Zhou Y. Protein elements and signal transduction process of self-incompatibility in Brassica oleracea. Acta Agron Sin, 2015, 41:1-14 (in Chinese with English abstract). | |
[84] |
Lithwick G, Margalit H. Relative predicted protein levels of functionally associated proteins are conserved across organisms. Nucleic Acids Res, 2005, 33:1051-1057.
pmid: 15718304 |
[85] |
Dilucca M, Cimini G, Forcelloni S, Giansanti A. Co-evolution between codon usage and protein-protein interaction in bacteria. Gene, 2021, 778:145475.
doi: 10.1016/j.gene.2021.145475 |
[86] |
Najafabadi H S, Goodarzi H. Salavati R. Universal function-specificity of codon usage. Nucleic Acids Res, 2009, 37:7014-7023.
doi: 10.1093/nar/gkp792 pmid: 19773421 |
[87] |
He W, Zhang H, Zhang Y, Wang R, Lu S, Ji Y, Liu C, Yuan P, Su S. Codon usage bias in the N gene of rabies virus. Infect Genet Evol, 2017, 54:458-465.
doi: 10.1016/j.meegid.2017.08.012 |
[88] | Luo W, Li Y, Yu S, Shen X, Tian L, Irwin D M, Shen Y. Better fit of codon usage of the polymerase and nucleoprotein genes to the chicken host for H7N9 than H9N2 AIVs. J Infect, 2019, 79:174-187. |
[89] | Greenbaum B D, Levine A J, Bhanot G, Rabadan R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog, 2008, 4:e1000079. |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[6] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[7] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[8] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[9] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[10] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[11] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[12] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[13] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[14] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
[15] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
|