欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1491-1499.doi: 10.3724/SP.J.1006.2009.01491

• 耕作栽培·生理生化 • 上一篇    下一篇

NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控

张霖,赵翔,王亚静,张骁*   

  1. 河南省植物逆境生物学重点实验室/河南大学生命科学学院,河南开封475004
  • 收稿日期:2009-02-20 修回日期:2009-04-22 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 张骁, E-mail: xzhang@henu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871300)资助。

Crosstalk of NO with Ca2+ in Stomatal Movement in Vicia faba Guard Cells

ZHANG Lin,ZHAO Xiang,WANG Ya-Jing,ZHANG Xiao*   

  1. Henan Key Laboratory of Plant Stress Biology,School of Life Sciences,Henan University,Kaifeng 475004,China
  • Received:2009-02-20 Revised:2009-04-22 Published:2009-08-12 Published online:2009-06-10
  • Contact: ZHANG Xiao, E-mail: xzhang@henu.edu.cn

摘要:

以蚕豆(Vicia faba L.)为材料研究NOCa2+蚕豆气孔运动及质膜K+通道的影响。结果表明,10 mmol L-1 Ca2+100 µmol L-1 NO供体SNP均有效抑制气孔开放,NO清除剂c-PTIO不能缓解Ca2+抑制气孔开放,相反胞外加入0.1 mmol L-1 Ca2+可以明显加强NO对气孔开放的抑制程度,该现象可被La3+(Ca2+通道抑制剂)缓解。以膜片钳技术记录全细胞K+电流发现,胞外10 µmol L-1100 µmol L-1 SNP均可选择性抑制蚕豆保卫细胞质膜内向K+通道,追加0.1 mmol L-1 Ca2+显著激活质膜外向K+通道,且可被La3+所缓解,然而0.1 mmol L-1 Ca2+单独作用并不影响质膜外向K+通道活性10 mmol L-1 Ca2+单独处理可激活质膜外向K+通道,但不能被c-PTIO缓解。分别Ca2+NO专一的荧光探针Fluo-3-AMDAF-2DA标记蚕豆保卫细胞原生质体,检测胞内Ca2+NO水平变化发现,100 µmol L-1 SNP明显诱导胞内Ca2+积累,但10 mmol L-1 Ca2+并不能诱导NO在细胞内积累。记录保卫细胞质膜Ca2+通道电流发现,NO可明显激活质膜Ca2+通道。表明NO有效抑制气孔开放,可能主要通过激活质膜Ca2+通道,提高胞内Ca2+,激活质膜外向K+通道促进K+外流,同时,可选择性抑制内向K+通道阻止K+内流,两种途径共同作用抑制气孔开放。然而,胞外10 mmol L-1 Ca2+对气孔和质膜K+通道活性的调节并不依赖于NO

关键词: 钙离子, 一氧化氮, 保卫细胞, 质膜K+通道, 信号转导

Abstract:

Previous studies suggested that both NO and Ca2+ can serve as a signalling intermediate in ABA, H2O2-induced stomatal movement. However, Its mechanism(s) of action is not well defined in guard cells and, generally, in higher plants. In this study, extracellular 10 mmol L-1 Ca2+ significantly inhibited stomatal opening, which was not alleviated by carboxy PTIO (c-PTIO, a NO scavenger). Sodium nitroprusside (SNP, a NO donor) showed effects of inhibition on stomatal opening at concentration of 10 or 100 µmol L-1. However, 0.1 mmol L-1Ca2+facilitated NO-inhibited stomatal opening, which was alleviated by LaCl3 (a Ca2+channel inhibitor) at concentration of 1 mmol L-1. To gain further insights into Ca2+ function in NO-regulated stomatal movement, we patch-clamped Vicia faba guard cell protoplasts in a whole-cell configuration. In the absence of extracellular Ca2+NO inhibited inward rectifying K+ current at concentration of 10 or 100 , µmol L-1, but have little effects on outward rectifying K+ current. NO significantly activated outward rectifying K+ current, when CaCl2 was added to the bath solution, at concentration of 0.1 mmol L-1, which was alleviated by LaCl3. In contrast, 0.1 mmol L-1 CaCl2 alone had little effects on inward or outward rectifying K+ current. Extracellular Ca2+significantly inhibited inward rectifying K+ current and activated outward rectifying K+ current at concentration of 10 mmol L-1, which was not alleviated by c-PTIO. A single-cell analysis of cytosolic Ca2+ and NO using Ca2+specific fluorescence probe Fluo-3-AM and DAF-2DA revealed that 100 or NO µmol L-1 SNP evidently induced accumulation of Ca2+ in the guard cellswhich was partially alleviated by LaCl3, but 0.1 or 10 mmol L-1 CaCl2 had few effects on the accumulation of NO in the guard cells. These results indicated that NO promotes influx of Ca2+ into cytoplasm through Ca2+ channels to activate outward rectifying K+ channels and promotes K+ eflux, alternatively, NO inhibits inward rectifying K+ channels and blocks K+ influx, thus inhibiting stomatal opening and preventing the excessive loss of water in plants. In addition, extracellular Ca2+ at concentration of 10 mmol L-1 modulatesstomatal movement and plasma membrane K+ channels of Vicia guard cells in a NO-independent signaling pathway.

Key words: Calcium, Nitric oxide, Guard cell, Plasma membrane K+ channels, Signal transduction

[1] Mcainsh M R, Brownlee C, Hetherington A M. Abscisic acid-induced elevation of guard cell cytoplasmic Ca2+ precedes stomatal closure. Nature, 1990, 343: 186-188

[2] Pei Z M, Murata Y, Benning G, Thomine S, Kluesener B, Allen G J, Grill E, Schroeder J I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature,2000,406: 731-734

[3] Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Ann Rev Plant Biol, 2004, 55: 401-427

[4] Knight H, Knight M R. Abiotic stress signalling pathways: Specificity and cross-talk. Trends Plant Sci, 2001, 6: 262-267

[5] McClung C R. Plant circadian rhythms. Plant Cell, 2006, 18: 792-803

[6] Gethyn J A, Kuchitsu K, Sarah P C, Murata Y, Schroeder J I. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell, 1999, 11: 1785-1798

[7] Knight H, Trewavas A J, Knight M R. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J,1997, 12: 1067-1078

[8] Zhao X(赵翔), Wang Y-L(汪延良), Wang Y-J(王亚静), Wang X-L(王西丽), Zhang X(张骁). Effects of exogenous Ca2+ on stomatal movement and plasma membrane K+ channels of Vicia faba guard cell under salt stress. Acta Agron Sin (作物学报), 2008, 34(11): 1970-1976 (in Chinese with English abstract)

[9] Schroeder J I, Hagiwara S. Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature, 1989, 338: 427-430

[10] Tang R H, Han S C, Zheng H L, Cook C W, Choi C S, Woerner T E, Jackson R B, Pei Z M. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science,2007, 315: 1423-1426

[11] McAinsh M R, Webb A A R, Taylor J E, Hetherington A M. Stimulus-induced oscillations in guard cell cytoplasmic free calcium. Plant Cell, 1995, 7: 1207-1219

[12] Matsumoto T K, Ellsmore A J, Cessna S G, Low P S, Pardo J M, Bressan R A, Hasegawa P M. An osmotically induced cytosolic Ca2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem, 2002, 277: 33075-33080

[14] Besson-Barda A L, Courtoisa C, Gauthiera A, Dahana J, Dobrowolska G, Jeandrozc S, Pugina A, Wendehennea D, Nitric oxide in plants: Production and cross-talk with Ca2+ signaling. Mol Plant, 2008, 1: 218-228

[15] Berridge M J, Lipp P , Bootman M D. The versatility and universality of calcium signaling. Nat Rev Mol Cell Biol, 2000, 1: 11-21

[16] Durner J , Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP2ribose. Proc Natl Acad Sci USA, 1998, 95: 10328-10333

[17] Lee H C. Physiological functions of cyclic ADP ribose and NAAP as calcium messengers. Annu Rev Pharmacol Toxicol, 2001, 41: 317-345

[18] Lü D(吕东), Zhang X(张骁), Jiang J(江静), An G-Y(安国勇), Zhang L-R(张玲瑞), Song C-P(宋纯鹏). NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. Acta Phytophysiol Sin (植物生理与分子生物学学报), 2005, 31(1): 62-70(in Chinese with English abstract)

[19] Zhang X, Takemiya A, Kinoshita T, Shimazaki K. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signaling pathways in Vicia guard cells. Plant Cell Physiol, 2007, 48: 715-723

[20] Yan J P, Tsuichihara N, Etoh T, Iwai S. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ, 2007, 30: 1320-1325

[21] Murata Y, Pei Z M, Mori I C, Schroeder J I. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell, 2001, 13: 2513-2523

[22] Liu X(刘新), Zhang S-Q(张蜀秋), Lou C-H(娄成后). Involvement of Ca2 + in stomatal movements of Vicia faba L. regulated by nitric oxide. Acta Phytophysiol Sin (植物生理与分子生物学学报), 2003, 29(4): 342-346 (in Chinese with English abstract)

[23] Garcia-Mata C, Gay R, Sokolvski S, Hills A, Lamattina L, Blatt M R. Nitric oxide regulate K+ and Cl- channels in guard cells through a subset of abscisic scid-evoked signaling pathways. Proc Natl Acad Sci USA,2003, 100: 1116-1121

[24] Sokolovski S, Blatt M R. Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol, 2004, 136: 4275-4284

[25] Wen Y(闻玉), Zhao X(赵翔), Zhang X(张骁).Effects of nitric oxide on root growth and absorption in wheat seedlings in response to water stress. Acta Agron Sin (作物学报), 2008, 34(2): 344-348 (in Chinese with English abstract)

[26] Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A. Early signaling events induced by elicitors of plant defenses. Mol Plant-Microbe Interact, 2006, 19: 711-724

[27] Zhang X, Zhang L, Dong F C, Gao J F, Galbraith D W, Song C P. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba.Plant Physiol, 2001, 126: 1438-1448

[28] Zhang X, Miao Y C, An G Y, Zhou Y, Shangguan Z P, Gao J F, Song C P. K+ channels inhibited by hydrogen peroxide mediate abscisic acid signaling in guard cells. Cell Res, 2001, 11: 195-202

[29] Hamill O P, Marty A, Neher E, Sakmann B, Sigworth F J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membran patches. Pfluger’s Archiv,1981, 391: 85-100

[30] Miao Y C, Lü D, Wang P C, Wang X C, Chen J, Miao C, Song C P. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell, 2006, 18: 2749-2766
[31] Zhang W, Fan L M, Wu W H. Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol, 2007, 143: 1140-1151
[32] Quiquampoix H, Ratcliffe R G, Ratkovic S, Vucinic Z.1Hand 31PNMR investigation of gadolinium uptake in maize roots. J Inorg Biochem,1990, 38: 265-275
[33] Gelli A, Blumwald E. Calcium retrieval from vacuolar pools. Plant Physiol, 1993, 102: 1139-1146
[1] 杨青华,郑博元,李蕾蕾,贾双杰,韩心培,郭家萌,王泳超,邵瑞鑫. 外源NO供体对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响[J]. 作物学报, 2018, 44(9): 1393-1399.
[2] 杨宗举,闫蕾,宋梅芳,苏亮,孟凡华,李红丹,白建荣,郭林,杨建平. 玉米光敏色素A1与A2在各种光处理下的转录表达特性[J]. 作物学报, 2016, 42(10): 1462-1470.
[3] 闫蕾,杨宗举,苏亮,肖阳,郭林,宋梅芳,孙蕾,孟凡华,白建荣,杨建平. 2个玉米ZmCRY1a基因的克隆及其响应光质处理的表达模式[J]. 作物学报, 2016, 42(09): 1298-1308.
[4] 邵瑞鑫,信龙飞,杨青华,上官周平. NO对干旱条件下小麦幼苗PSII功能特性的调节效应[J]. 作物学报, 2012, 38(09): 1710-1715.
[5] 孟艳艳, 范术丽, 宋美珍, 庞朝友, 喻树迅. NO对生长发育中棉花叶片NO含量及其对抗氧化物酶的影响[J]. 作物学报, 2011, 37(10): 1828-1836.
[6] 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810.
[7] 詹洁, 王天菊, 何虎翼, 李创珍, 何龙飞. 硝普钠缓解花生铝毒害作用和影响AhSAGAhBI-1基因表达[J]. 作物学报, 2011, 37(03): 459-468.
[8] 王旺田,季彦林,张金文,陶士珩,王蒂,吴兵. 光质与马铃薯块茎细胞信号分子和糖苷生物碱积累的关系[J]. 作物学报, 2010, 36(4): 629-635.
[9] 吴韦铷,朱利泉,李成琼,杨昆,唐章林,任雪松,王小佳. 甘蓝KAPP编码基因的克隆与序列分析[J]. 作物学报, 2010, 36(07): 1067-1074.
[10] 赵立群;刘玉良;孙宝腾;王彩琴. 干旱胁迫下一氧化氮对小麦离体根尖离子吸收的影响[J]. 作物学报, 2009, 35(3): 530-534.
[11] 刘旭;李玲. 花生NAC转录因子AhNAC2AhNAC3的克隆及转录特征[J]. 作物学报, 2009, 35(3): 541-545.
[12] 赵翔;汪延良;王亚静;王西丽;张骁. 盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控[J]. 作物学报, 2008, 34(11): 1970-1976.
[13] 肖强;陈娟;吴飞华;郑海雷. 外源NO供体硝普钠(SNP)对盐胁迫下水稻幼苗中叶绿素和游离脯氨酸含量以及抗氧化酶的影响[J]. 作物学报, 2008, 34(10): 1849-1853.
[14] 孙永刚;凌腾芳;王家杰;徐晟;宣伟;汤国辉;沈文飚. 外源一氧化氮供体硝普钠对小麦种子萌发早期β-淀粉酶及其亚细胞分布的影响[J]. 作物学报, 2008, 34(09): 1608-1614.
[15] 张蓓;佘小平;张广斌;孟朝妮;宋喜贵. 生长素、细胞分裂素对黑暗和ABA诱导蚕豆气孔关闭的抑制效应[J]. 作物学报, 2008, 34(06): 1034-1041.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!