欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 629-635.doi: 10.3724/SP.J.1006.2010.00629

• 耕作栽培·生理生化 • 上一篇    下一篇

光质与马铃薯块茎细胞信号分子和糖苷生物碱积累的关系

王旺田1,2,季彦林1,张金文1,2,陶士珩3,王蒂1,2,*,吴兵1   

  1. 1甘肃农业大学农学院,甘肃兰州730070;2甘肃省作物遗传改良与种质创新重点实验室,甘肃兰州730070;3西北农林科技大学生命科学学院,陕西杨凌712100
  • 收稿日期:2009-09-15 修回日期:2010-01-10 出版日期:2010-04-12 网络出版日期:2010-02-09
  • 通讯作者: 王蒂, E-mail: wangd@gsau.edu.cn; Tel: 0931-7631167
  • 基金资助:

    本研究由农业部现代农业产业技术体系建设专项(Mnyctx-15), 甘肃省自然科学基金项目(0710RJZA088)和教育部博士生国内访学项目(Z107020901)资助。

Relation between Light Qualities and Accumulation of Steroidal Glycoalkaloids as Well as Signal Molecule in Cell in Potato Tubers

WANG Wang-Tian1,2,JI Yan-Lin1,ZHANG Jin-Wen1,2,TAO Shi-Heng3,Wang Di1,2,*,WU Bing1   

  1. 1 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 2 Gansu Key Laboratory of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China;3 College of Life Sciences, Northwest A&F University, Yanglin 712100, China
  • Received:2009-09-15 Revised:2010-01-10 Published:2010-04-12 Published online:2010-02-09
  • Contact: WANG Di, E-mail: wangd@gsau.edu.cn; Tel: 0931-7631167

摘要:

马铃薯块茎糖苷生物碱(SGAs)含量超过20 mg 100-1 g-1 FW-1,人畜食用即可引起中毒。而马铃薯块茎中SGAs的积累受多种因素的影响,其中受温度与光照影响较大。为减少马铃薯块茎中SGAs的积累,了解SGAs在马铃薯块茎中的积累机制,研究了同一温度下不同光质对马铃薯块茎SGAs的积累的影响。结果表明红光照射后各品种SGAs平均含量比蓝光、白光、黑暗处理分别提高26.02%、55.50%和100.79%,且在α=0.01水平上差异极显著,说明不同光质对马铃薯块茎SGAs含量影响不同,红光影响最大,蓝光次之。同时,马铃薯块茎经不同光质处理后作为第二信使的G蛋白含量在红光下较蓝光、黑暗、白光下分别上升0.95%、2.01%、3.86%,钙调蛋白含量分别增加7.94%、37.41%和87.24%。由此可知,红光是SGAs积累的重要信号分子,其信号作用启动了红光受体PHYB,与第二信使G蛋白和CaM等共同参与马铃薯块茎SGAs的代谢积累。

关键词: 马铃薯, 光质, 信号转导分子, 糖苷生物碱

Abstract:

The potato steroidal glycoalkaloids (SGAs) are secondary metabolites, two major SGA in cultivated potato (Solanum tuberosum) are a-chaconine and a-solanine, and their total content in tubers should not exceed the safety limit of 20 mg per 100 g fresh weight, otherwise it can be toxic to humans. Accumulation of SGAs in potato tubers is influenced by many factors including the key environmental factors, temperature and light. In order to reduce the content of SGAs and research the accumulation mechanism of SGAs in potato tubersin the present study we attempted to compare the contents of SGAs, second messengerscalmodulin and the G protein in potato tubers, treated with the treatments of red light, blue light, white light and darkness under the same temperature(15℃). The results indicated that red light significantly (P < 0.01) increased the average content of SGAs in potato tubers,with 26.02%, 55.50%, and 100.79% higher than that treated with blue light, white light and darkness, respectively. It was confirmed that light with different wavelengths has different effects on accumulation of SGAs in potato tubers. Among factors influencing the accumulation of SGAs in potato tubers, the red light took the first place and the blue light took the second place. Meanwhile, the content of second messengersthe G protein in potato tubers treated with red light was 0.95%, 2.01%, and 3.86% higher than that treated with blue light, white light and darkness, respectively. And the content of calmodulin in potato tubers treated with red light was 7.94%, 37.41%, and 87.24% higher than that treated with blue light, white light and darkness, respectively. It was inferred that the red light is the signal molecule for SGAs accumulation, which stimulates the acceptor (PHYB) of red light and participate in accumulation of SGAs in potato tubers, together with the second messenger G protein, calmodulin, and so on.

Key words: Potato, Light qualities, Signal transduction molecule, Steroidal glycoalkaloids

[1] Nema P K, Ramayya N, Duncan E, Niranjan K.Potato glycoalkaloids: Formation and strategies for mitigation. J Sci Food Agric, 2008, 88: 1869-1881

[2] Deahl K L, Cantelo W W, Sinden S L, Sanford L L. The effect of light intensity on Colorado potato beetle resistance and foliar glycoalkaloid concentration of four Solanum chacoense clones. Am J Potato Res, 1991, 68: 659-666

[3] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005, 10: 383-389

[4] Yang M-Z(羊明智), Wu Y(吴叶), Zhang Y-D(章亚东). The effect of the CAM and CAM-dependent kinase on the expression of c-fos gene in the spinal cord matter. J Nanhua Univ(Med Edn)(南华大学学报·医学版), 2007, 35(4): 529-533 (in Chinese with English abstract)

[5] Zhao S-C(赵士诚), Sun J-W(孙静文), Wang X-B(王秀斌), Wang H(汪洪), Liang G-Q(梁国庆), Zhou W(周卫). Effects of cadmium on calmodulin content and Ca2+-ATPase activities of maize (Zea mays) seedling. Plant Nutr Fert Sci (植物营养与肥料学报), 2008, 14(2): 264-271 (in Chinese with English abstract)

[6] Biro R L, Sun D Y, Serlin B S, Terry M E, Datta N, Sopory S K, Roux S J. Characterization of oat calmodulin and radioimmunoassay of its subcellular distribution. Plant Physiol, 1984, 75: 382-386

[7] Ma L-G(马力耕), Sun D-Y(孙大业). Phytochrome directly binds to transcription factor to regulate gene expression and development. Chin Bull Life Sci (生命科学), 2001, 13(4): 148-150 (in Chinese with English abstract)

[8] Wang Z-H(王朝晖), Sun D-Y(孙大业). Advences of the studies on plant calmoduln. Chin Bull Bot (植物学通报), 1997, 14(1): 1-7 (in Chinese)

[9] Miller D, Hable W, Gottwald J, Ellard M, Demura T, Lomax T, Carpita N. Connections: The hard wiring of the plant cell for perception, signaling, and response. Plant Cell, 1997, 9: 2105-2117

[10] Li Z-G(李忠光), Gong M(龚明). Involvement of calcium and calmodulin in the mechanical stimulation-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension culture cells. Plant Physiol Commun (植物生理学通讯), 2009, 45(4): 363-367(in Chinese with English abstract)

[11] Wang Q-B(王全保), Wang J-Z(王建枝). Calcium/calmodulin-dependent protein kinase II and its biologic function. Chin J Pathophysiol (中国病理生理杂志), 2002, 18(10): 1300-1302 (in Chinese with English abstract)

[12] Sun D Y, Bian Y Q, Zhao B H, Zhao L Y, Yu X M, Duan S J. The effects of extracellular calmodulin on cell wall regeneration of protoplasts and cell division. Plant Cell Physiol, 1995, 36: 133-138

[13] Sun D-Y(孙大业), Ma L-G(马力耕). Extracellular CaM-one kinds of peptide messenger in plant? Sci China (Ser C) (中国科学·C辑), 2001, 31(4): 289-298 (in Chinese)

[14] Chen Y L, Zhang X Q, Chen J, Wang X C. Existence of extracellular calmodulin in abaxial epidermis of Vicia faba L. and its role in regulation of stomatal movements. Acta Bot Sin, 2003, 45: 40-46

[15] Zhan L-Q(张来群), Li F(李芳), Sun D-Y(孙大业). The effects of extracellular calmodulin on protein phosphorylation in cytoplasmic fraction from suspension-cultured tobacco (Nicotiana tobacum L.) cells. Acta Phytophysiol Sin (植物生理学报), 2001, 27(3): 201-207 (in Chinese with English abstract)

[16] Jones H D, Smith S J, Desikan R, Plakidou-Dymock S, Lovegrove A, Hooley R. Heterotrimeric G proteins are implicated in gibberellin induction of α-amylase gene expression in wild oat aleurone. Plant Cell, 1998, 10: 245-253

[17] Beffa R, Szell M, Meuwly P, Pay A, Vogeli-lange R, Metraux J P, Neuhaus G, Meins F, Nagy F. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J, 1995, 14: 5753-5761

[18] Legendre L, Heinstein P F, Low P S. Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem, 1992, 267: 20140-20147

[19] Isabelle Chérel. Regulation of K+ channel activities in plants: From physiological to molecular aspects. J Exp Bot, 2004, 55: 337-351

[20] Kim W Y, Cheong N E, Lee D C, Je D Y, Bahk J D, Cho M J, Lee S Y. Cloning and sequencing analysis of a full-length cDNA encoding a G protein α subunit, SGA1, from soybean. Plant Physiol, 1995, 108: 1315-1316

[21] Gotor C, Lam E, Cejudo F J, Romero L C. Isolation and analysis of the soybean SGA2 gene (cDNA), encoding a new member of the plant G-protein family of signal tranducers. Plant Mol Biol, 1996, 32: 1227-1234

[22] Pan J-L(潘建玲), Li Z-R(李忠仁). Relationship of acupunture and G protein regulation. Liaoning J Trad Chin Med (辽宁中医杂志), 2009, 36(5): 852-854 (in Chinese with English abstract)

[23] Zhai Z-H(翟中和), Wang X-Z(王喜忠), Ding M-X(丁明孝). Cell Biology (细胞生物学). Beijing: Higher Education Press, 2000. pp 124-157 (in Chinese)

[24] Assmann S M. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell, 2002, 14: 355-373

[25] PandeyS, Assmann S M. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates ABA signaling. Plant Cell, 2004, 16: 1616-1632

[26] Okamoto H, Matsui M, Deng X W. Overexpression of the heterotrimeric G protein α-subunit enhances phytochrome-mediated inhibition of hypocotyl elongation in Arabidopsis. Plant Cell, 2001, 13: 1639-1651

[27] Ma L G, Cui S J, Sun D, Xu X D. The presence of a heterotrimeric G protein and itsroles in signal transduction of extracelluar calmodulin in pollen germination and tube growth. Plant Cell, 1999, 11: 1351-1363

[28] Sotelo A, Serrano B. HPLC determination of the glycoalkaloids Solanine and Chaconine in 12 commercial varieties of mexican potato. Agric Food Chem, 2000, 48: 2472-2475

[29] Coxon D T, Price K R, Jones P G. A simplified method for the determination of total glycoalkaloids in potato tubers. Sci Food Agric, 1979, 30: 1043-1049

[30] Zheng Q-F(郑秋峰). Determination and Limitation of Solanine in Feed (饲料中龙葵素的测定方法和阈量研究). MS Dissertation of Zhejiang University, 2003. p 14 (in Chinese with English abstract)

[31] Hao J-J(郝建军), Kang Z-L(康宗利), Yu Y(于洋). Experimental Technique for Plant Physiology (植物生理学实验技术). Beijing: Chemical Industry Press, 2006. pp 2-14 (in Chinese)

[32] Larsson C, Widell S, Kjellbom P. Preparation of high-purity plasma membranes. Meth Enzymol, 1987, 148: 558-568

[33] Gonzalo P, Sontag B, Guillot D, Reboud J P. Fluoronetric assay of GTPase activity: Application to the couple elongation factor eEF-2-ribosome. Anal Biochem, 1995, 225: 178-180

[34] Zheng H-J(郑海金), Hu J-C(胡建成), Chen X-Y(陈鑫阳), Shen J-M(沈剑敏), Li W-M(李伟明), Wang W(王玮), Xiong F-L(熊复来), Cao K-Q(曹坤清). Characterization and purification of plant calmodulin. J Lanzhou Univ (Nat SciEdn) (兰州大学学报·自然科学版), 1994, 30(3): 97-101 (in Chinese with English abstract)

[35] Guo C-H(郭彩华), Liu J-W(刘静雯), Lu Z-H(卢珍华), Zhan L-L(詹玲玲). Purification and Identification of calmodulin (CaM ) from Prorocentrum donghaiense Lu. J Jimei Univ (Nat Sci)(集美大学学报·自然科学版), 2009, 14(1): 29-34 (in Chinese with English abstract)

[36] Sinden S L, Sanford L L, Webb R E. Genetic and environmental control of potato glycoalkaloids. Am Potato J, 1984, 61: 141-156

[37] Dimenstein L, Lisker N, Kedar N, Levy D. Changes in the content of steroidal glycoalkaloids in potato tubers grown in the Weld and in the greenhouse under different conditions of light, temperature and daylength. Physiol Mol Plant Pathol, 1997, 50: 391-402

[38] Lachman J, Hamouz K, Orsak M. Potato glycoalkaloids and their significance in plant protection and human nutrition: Review. Series Rostlinna Vyroba, 2001, 47: 181-191

[39] Xu L(许莉), Liu S-Q(刘世琦), Qi L-D(齐连东), Liang Q-L(梁庆玲), Yu W-Y(于文艳). Effect of light quality on leaf lettuce photosynthesis and chlorophyll fluorescence. Chin Agric Sci Bull (中国农学通报),2007, 23(1): 96-100 (in Chinese with English abstract)

[40] Pu G-B(蒲高斌), Liu S-Q(刘世琦), Liu L(刘磊), Ren L-H(任丽华). Effects of different light qualities on growth and physiological characteristics of tomato seedlings. Acta Hort Sin (园艺学报), 2005, 32(2): 420-425 (in Chinese with English abstract)

[41] Xu K(徐凯), Guo Y-P(郭延平), Zhang S-L(张上隆). Effect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves. Sci Agric Sin (中国农业科学), 2005, 38(2): 369-375 (in Chinese with English abstract)

[42] Shi X-D(时向东), Cai H(蔡恒), Jiao F(焦枫), Shi Y(时映), Sun J-L(孙家利). Research advances in effects of light qualities on crop growth and development. Chin Agric Sci Bull (中国农学通报), 2008, 24(6): 226-231 (in Chinese with English abstract)

[43] Zheng Z-G(郑珍贵), Miao H(缪红), Yang W-J(杨文杰), Liu D(刘涤), Hu Z-B(胡之璧). Effects of nutritional and environmental factors on cell growth and ajmalicine production of full habituated catharanthus roseus cells. Acta Bot Sin (植物学报), 1999, 41(2): 184-189 (in Chinese with English abstract)

[44] Stuefer J F, Huber H. Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia, 1998, 117: 1-8

[45] Hiroki S, Ichino K. Comparison of growth habits under various light conditions between two climax species, Castanopsis sieboldii and Castanopsis cuspidate, with special reference to their shade tolerance. Ecol Res, 1998, 13: 65-72

[46] Huang Y(黄勇), Zhou J-H(周冀衡), Zheng M(郑明), Yang H-Q(杨虹琦), Zhang N-Y(张苧元). Effect of UV-B on growth and development and secondary metabolism of flue-cured tobacco. Chin J Eco-Agric (中国生态农业学报), 2009, 17(1): 140-144 (in Chinese with English abstract)

[47] Quail P H, Boylan M T, Parks B M, Short T W, Xu Y, Wagner D. Phytochromes: Photosensory perception and siginal transduction. Science,1995, 268: 675-680

[48] Bossen M E, Kendrick R E, Vredenberg W J. The involvement of a G-protein in phytochrome regulated Ca2+-dependent swelling of etiolated wheat protoplasts. Physiol Plant, 1990, 80: 55-62
Duan G-M(段光明), Feng C-P(冯彩萍). Glycoalkaloids of potato, Plant Physiol Commun (植物生理学通讯), 1992, 28(6): 457-461 (in Chinese)
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[15] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!