欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1606-1612.doi: 10.3724/SP.J.1006.2009.01606

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Glu-1位点等位变异及表达量对麦谷蛋白聚合体粒度分布的影响

张平平1,马鸿翔1,姚金保1,何中虎2,3,*   

  1. 1江苏省农业科学院农业生物技术研究所,江苏南京210014;2中国农业科学院作物科学研究所/国家小麦改良中心/高家农作物基因资源与基因改良重大科学工程,北京1000081;3国家玉米小麦改良中心中国办事处,北京100081
  • 收稿日期:2009-01-20 修回日期:2009-03-15 出版日期:2009-09-12 网络出版日期:2009-07-03
  • 通讯作者: 何中虎, E-mail: zhhe@public3.bta.net.cn; Tel: 010-68918547
  • 基金资助:

    本研究由引进国际先进农业科学技术(948计划)项目(2006-G2)和江苏省博士后科研资助计划项目(0702011C )资助。

Effect of Allelic Variation and Expression Quantity at Glu-1 Loci on Size Distribution of Glutenin Polymer in Common Wheat

ZHANG Ping-Ping1,MA Hong-Xiang1,YAO Jin-Bao1,HE Zhong-Hu2,3,*   

  1. 1Institute of Agricultural Biotechnology,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China;2Institute of Crop Sciences/National Wheat  Improvement Centre/National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081;3CIMMYT China Office,Beijing 100081,China
  • Received:2009-01-20 Revised:2009-03-15 Published:2009-09-12 Published online:2009-07-03
  • Contact: 何中虎, E-mail: zhhe@public3.bta.net.cn; Tel: 010-68918547

摘要:

选用我国春播麦区23(试验I)和北部冬麦区21(试验II)品种(),研究了Glu-1位点等位变异及其亚基表达量对谷蛋白聚合体粒度分布的影响。结果表明,Glu-1位点等位变异及其亚基表达量显著影响谷蛋白聚合体的粒度分布,且影响程度受蛋白质含量,尤其是高分子量谷蛋白总量水平的影响。在高分子量谷蛋白总量较低时(试验I)Glu-B1Glu-D1位点对不溶性谷蛋白大聚体含量(UPP)及其占聚合体蛋白总量的百分比(%UPP)的加性效应都达1%显著水平;Glu-B1Glu-D1位点单个亚基对两者的贡献分别为7OE+8* >7+9 >17+18 >7+85+10 >2+12,具有5+10亚基组合的%UPP显著高于具有2+12的亚基组合。高分子量谷蛋白的亚基表达量与UPP含量呈高度正相关,相关系数为0.79~0.93(P < 0.01)。而在高分子量谷蛋白总量较高时(试验II),仅Glu-D1位点对%UPP的加性效应达5%显著水平,5+10亚基对%UPP的贡献显著高于2+124+12;亚基组合间的聚合体粒度分布无显著差异。高分子量谷蛋白的亚基表达量与UPP含量的相关系数为0.42~0.86(P < 0.050.01)。结合高分子量谷蛋白表达量和优质亚基进行选择,能有效提高不溶性谷蛋白大聚体的含量和相对比例,有利于面筋强度和加工品质的进一步提高。

关键词: 普通小麦, Glu-l位点, 谷蛋白聚合体, 粒度分布

Abstract:

The size distribution of glutenin polymers is a key factor in determining gluten strength and end-use quality, while the relationship with the quality and quantity of subunits at Glu-1 loci has been not studied in detailed. Twenty-three spring genotypes (Trial I) and twenty-one winter genotypes (Trial II) were used to study the effect of allelic variation and expression quantity at the Glu-1 loci on the size distribution of glutenin polymers. The results showed that the size distribution of glutenin polymers was significantly affected by allelic variation and subunits in expression quantity at the Glu-1 loci based on flour protein content, especially on total expressions of high-molecular-weight glutenin subunits (HMW-GS). In Trail I, low expression of HMW-GS was presented, significantly additive effects were observed at Glu-B1 and Glu-D1 loci (P < 0.01) for SDS-unextractable polymeric protein (UPP) and percent SDS-unextractable polymeric protein in total polymeric protein (%UPP). The contribution of individual glutenin subunit could be ranked as 7OE+8* > 7+9 > 17+18 > 7+8 and 5+10 > 2+12 at Glu-B1 and Glu-D1 loci, respectively. Higher %UPP was observed in those allelic compositions with subunit 5+10 than with 2+12. The expression of HMW-GS was highly positively correlated with UPP (r = 0.79–0.93). While in Trial II, high expression of HMW-GS was presented, significantly additive effects were only observed at Glu-D1 loci (P < 0.05) for %UPP. The contribution of individual glutenin subunit ranked as 5+10 > 2+12 and 4+12 at Glu-D1 loci for %UPP, and no significant difference was observed among allelic compositions for the size distribution of polymers. The expression of HMW-GS was positively correlated with UPP (r = 0.42–0.86, P < 0.05 or 0.01). In conclusion, gluten strength and end-use quality can be improved by selection of high quality subunits in combination with high expression in breeding program.

Key words: Commant Wheat, Glu-1 loci, Glutenin polymeric Protein, Size Distribution

[1] Wieser H, Zimmermann G. Importance of amounts and proportions of high molecular weight subunits of glutenin for wheat quality. Eur Food Res Tech, 2000, 210: 324-330

[2] Shewry P R, Halford N G, Tatham A S. The high moleculoar weight subunits of wheat gluten. J Cereal Sci, 1992, 15: 105-120

[3] Payne P I, Nightingale M A, Krattiger A F, Holt L M. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric, 1987, 40: 51-65

[4] Zhao H(赵和), Lu S-Y(卢少源), Li Z-Z(李宗智). Studies on inheritance and variation of HMW glutenin subunits and their correlation with quality and other agronomic characters in wheat. Acta Agron Sin (作物学报), 1994, 20(1): 67-75 (in Chinese with English abstract)

[5] Zhao Y-M (赵友梅), Wang S-J (王淑俭). The application of HMW glutenin subunits in the study of wheats baking quality property. Acta Agron Sin (作物学报), 1990, 16(3): 208-218 (in Chinese with English abstract)

[6] Song J-M(宋建民), Wu X-Y(吴祥云), Liu J-J(刘建军), Liu A-F(刘爱峰), Zhao Z-D(赵振东), Liu G-T(刘广田). Study on quality scoring system assessed by wheat high-molecular-weight glutenin subunits. Acta Agron Sin (作物学报), 2003, 29(6): 829-834 (in Chinese with English abstract)

[7] Mao P(毛沛), Li Z-Z(李宗智), Lu S-Y(卢少源). The composition of high molecular weight glutenin subunits of genetic resources of bread wheat and their relationship with bread-making quality. Sci Agric Sin (中国农业科学), 1995, 28(suppl): 22-27 (in Chinese with English abstract)

[8] Zhang X-Y (张学勇), Dong Y-C(董玉琛), You G-X (游光侠), Wang L-F (王兰芬), Jia J-Z (贾继增). Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese wheat varieties released in the last 50 years. Sci Agric Sin (中国农业科学), 2001, 34(4): 355-362 (in Chinese with English abstract)

[9] Zhang P-P(张平平), Zhang Q-J(张岐军), Liu L(刘丽), Xia X-C(夏先春), He Z-H(何中虎). Identification of HWM-GS in Glu-B1 loci by HPLC method and the effects of 7OE on wheat dough strength. Acta Agron Sin (作物学报), 2007, 33(10): 1575-1581 (in Chinese with English abstract)

[10] Lindsay M P, Skerritt J H. The glutenin macropolemer of wheat flour dough: structure-function perspectives. Trends Foods Sci Tech, 1999, 10: 247-253

[11] Ciaffi M, Tozzi L, Lafiandra D. Relationship between flour composition determined by size-exclusion high-performance liquid chromatography and dough rheological parameters. Cereal Chem, 1996, 73: 346-351

[12] Gupta R B, Khan K, MacRitchie F. Biochemical basis of flour properties in bread wheats. I. Effects of variation in the quantity and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23-41

[13] Gupta G B, MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-3 and Gli-1 of common wheats. Biochemical basis of the allelic effects on dough properties. Cereal Chem, 1994, 19: 19-29

[14] Liu L(刘丽), Zhou Y(周阳), He Z-H(何中虎), Peña R J, Zhang L-P(张立平). Effect of allelic variation at Glu-1 and Glu-3 loci on insoluble glutenin content. Acta Agron Sin (作物学报), 2004, 30(11): 1086-1092 (in Chinese with English abstract)

[15] Tang J-W(唐建卫), Liu J-J(刘建军), Zhang P-P(张平平), Xiao Y-G(肖永贵), Qu Y-Y(曲延英), Zhang Y(张勇), He Z-H(何中虎). Effect of allelic variation at the Glu-1 loci and 1B/1R translocation on the quantity of gluten protein fractions and pan bread making quality in common wheat. Acta Agron Sin (作物学报), 2008, 34(4): 571-577 (in Chinese with English abstract)

[16] Zhao H-X(赵会贤), Hu S-W(胡胜武), Ji W-Q(吉万全), Daryl M. The effects of allelic variation at glutenin subunit loci Glu-1 and Glu-3 on the size distribution of polymeric protein. Acta Agron Sin (作物学报), 1998, 31(1): 69-75 (in Chinese with English abstract)

[17] AACC International. Approved Methods of the American Association of Cereal Chemists, 9th Ed. The Association: St. Paul, MN, 1995

[18] Liu L, He Z H, Yan J, Zhang Y, Xia X C, Peña R J. Allelic variation at the Glu-1 and Glu-3 loci, presence of 1B·1R translocation, and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005, 142: 197-204

[19] Singh N K, Shepherd K W, Cornish G B. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J Cereal Sci, 1991, 14: 203-208

[20] Payne P I, Lawrence G J. Catalogue of alleles for the complex loci, Glu-A1, Glu-B1, and Glu-D1, which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Comm, 1983, 11: 29-35

[21] Zhang P-P(张平平), Zhang Y(张勇), Xia X-C(夏先春), He Z-H(何中虎). Protocol establishment of reversed-phase high-performance liquid chromatography (RP-HPLC) for analyzing wheat gluten protein. Sci Agric Sin (中国农业科学), 2007, 40(5): 1002-1009 (in Chinese with English abstract)

[22] Larroque O R, Gianibelli M C, Gomez Sanchez M, MacRitchie F. Procedure for obtaining stable protein extracts of cereal flour and whole meal for size-exclusion HPLC analysis. Cereal Chem,2000, 77: 448-450

[23] Gianibelli M C, Larroque O R, MacRitchie F. Biochemical, genetic, molecular characterization of wheat glutenin and its component subunits. Cereal Chem, 2001, 78: 635-646

[24] Branlard G. Prediction of the bread wheat quality from HMW glutenins and gliadins. In: Lasztity L, Bekes F, eds. Gluten Proteins: Proceedings of the third Gluten Protein Workshop. Budapest, Hungar, 1987. pp 604-612

[25] Huebner F R, Bietz J A, Nelsen T, Bains G S, Finney P L. Soft wheat quality as related to protein composition. Cereal Chem, 1999, 76: 650-655

[26] Kolster P, van Eeuwijk F A, van Gelder W M J. Additive and epistatic effects of allelic variation at the high molecular weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica, 1991, 55: 277-285

[27] Larroque O R, Gianibelli M C, Lafiandra D, Sharp P, Bekes F. The molecular weight distribution of the glutenin polymer as affected by the munber, type and experession levels of HMW-GS. In: Pogna N E, Romanò M, Pogna E A, Galterio G eds. Proceedings of 10th International Wheat Genetics Symposium, Poestum, Roma, Italy, 2003. pp 447-450

[28] Sun H(孙辉), Yao D-N(姚大年), Li B-Y(李保云), Liu G-T(刘广田), Zhang S-Z(张树榛). Effects of genetic and environmental factors on the content of glutenin macropolymer. J Triticeae Crops, 2000, 20: 23-27

[29] Zhang P P, He Z H, Chen D S, Zhang Y, Larroque O R, Xia X C. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. J Cereal Sci, 2007, 46: 1-10

[30] Zhang P P, He Z H, Zhang Y, Zhang Y, Xia X C. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370-378
[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[3] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[4] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[5] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[6] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[7] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[8] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[9] 刘希伟,张敏,李勇,张玉春,宋霄君,赵城,蔡瑞国. 花后不同强度遮光对糯小麦和非糯小麦淀粉组分和理化特性的影响[J]. 作物学报, 2017, 43(05): 777-786.
[10] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[11] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[12] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[13] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[14] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[15] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!