欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1613-1619.doi: 10.3724/SP.J.1006.2009.01613

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦品种Brock抗白粉病基因分子标记定位

李根桥,房体麟**,朱婕,高亮亮**,李闪,解超杰,杨作民,孙其信,刘志勇*   

  1. 中国农业大学植物遗传育种系/农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室,北京100193
  • 收稿日期:2009-02-18 修回日期:2009-04-28 出版日期:2009-09-12 网络出版日期:2009-07-03
  • 通讯作者: 刘志勇, E-mail: zhiyongliu@cau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006aa100102,2006AA10Z1E9,2006AA10Z1C4,2006BAD01A02),国家杰出青年科学基金项目(30425039),教育部长江学者和创新团队发展计划项目,高等学校学科创新引智计划项目(111-2-03)资助。

Molecular Identification of a Powdery Mildew Resistance Gene from Common Wheat Cultivar Brock

LI Gen-Qiao,FANG Ti-Lin**,ZHU Jie,GAO Liang-Liang**,LI Shan,XIE Chao-Jie,YANG Zhuo-Min,SUN Qi-Xin,LIU Zhi-Yong*   

  1. Department of Plant Genetics & Breeding, China Agricultural University / State Key Laboratory for Agrobiotechnology / Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, Beijing 100193, China
  • Received:2009-02-18 Revised:2009-04-28 Published:2009-09-12 Published online:2009-07-03
  • Contact: LIU Zhi-Yong, E-mail: zhiyongliu@cau.edu.cn

摘要:

为明确利用Brock转育成的小麦抗白粉病品系3B529(411*7//农大015/Brock, F6)抗性的遗传基础,将高感白粉病小麦品系薛早和3B529杂交,获得F1代、F2分离群体和F2:3家系。抗病性鉴定和遗传分析结果表明,3B529E09小种的抗性受1对显性基因控制,暂被定名为MlBrock。利用BSA和分子标记分析,获得了与MlBrock连锁的3SSR标记Xcfd81Xcfd78Xgwm1592SCAR标记SCAR203SCAR112,根据SSR和SCAR标记在中国春缺体四体、双端体和缺失系的定位结果,将MlBrock定位在小麦染色体臂5DS Bin 0~0.63区间上。MlBrockXcfd81SCAR203共分离,与SCAR112的遗传距离为0.5 cM。这些分子标记的建立有利于今后Brock抗白粉病基因分子标记辅助选择和基因聚合。综合抗白粉病基因MlBrock的染色体定位和抗谱分析结果,推测MlBrock很可能是Pm2基因。

关键词: 小麦白粉病, Brock, SSR标记, SCAR标记, Pm2

Abstract:

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most important diseases of common wheat (Triticum aestivum L.) worldwide. Common wheat cultivar Brock introduced from UK is highly resistant (IT: 0;) to powdery mildew prevalent isolate E09 at the seedling and adult plant stages in North China. Genetic analysis using an F2 segregating population and F2:3 lines, derived from a cross between susceptible common wheat lines Xuezao and resistant common wheat line 3B529 (Jing 411*7//Nongda 015/Brock, F6), indicated that a single dominant gene, temporarily designated MlBrock, was responsible for the resistance of 3B529. By bulked segregant and molecular marker analyses, three polymorphic SSR markers (Xcfd81, Xcfd78, and Xgwm159) and two SCAR markers (SCAR203 and SCAR112) were found to belinked to MlBrock. Among these markers, Xcfd81 and SCAR203 were cosegregated with MlBrock, and SCAR112, Xcfd78, and Xgwm159 were linked to MlBrock with genetic distances of 0.5, 5.5, and 12.7 cM, respectively. According to the available physical bin mapping result of MlBrock cosegregated SSR marker Xcfd81 and SCAR203 in Chinese Spring, MlBrock was further located on chromosome bin 0–0.63 of 5DS. According to the infection-type of E09 Bgt isolate and mapping results, MlBrock might be powdery mildew resistance gene Pm2. The molecular markers developed in this study are useful for marker-assisted selection (MAS) and gene pyramiding of powdery mildew resistance genes in wheat breeding programs.

Key words: Powdery mildew, Brock, SSR marker, SCAR marker, Pm2

[1] Yang Z-M(杨作民), Tang B-R(唐伯让), Shen K-Q(沈克全), Xia X-C(夏先春). A strategic problem in wheat resistance breeding-building and utilization of sources of second-line resistance against rusts and mildew in China. Acta Agron Sin(作物学报), 1994, 20(4): 385-394 (in Chinese with English abstract)

[2] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers D J, Appels R, Devos K M. Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P eds. Proceedings of the 11th International Wheat Genet Symposium. Sydney, Australia: Sydney University Press, 2008

[3] Huang X Q, Röder M S. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica, 2004, 127: 203-223

[4] Liu Z, Sun Q, Ni Z, Yang T. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed, 1999, 118: 215-219

[5] Tommasini L, Yahiaoui N, Srichumpa P, Keller B. Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet, 2006, 114:165-175

[6] Yahiaoui N, Kaur N, Keller B. Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J, 2009, 57: 846-856

[7] Singh D, Park R F, McIntosh R A. Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica, 2001, 120: 205-218

[8] Cromey M G. A new pathotype of puccinia striiformis in New Zealand with increased pathogenicity to wheat cultivars with the adult plant resistance gene Yr14. Aust Plant Pathol, 1992, 21: 172-174

[9] Wang Z, Zheng Q, Peng Y, Xie C, Sun Q, Yang Z. Identification of random amplified polymorphism DNA and simple sequence repeat markers linked to powdery mildew resistance in common wheat cultivar Brock. Plant Prod Sci, 2004, 7: 319-323

[10] Zhao P(赵培). Random amplified polymorphic DNA and sequence characterized amplified region marker linked to unknown powdery mildew resistance gene in wheat cultivar Brock. MS Dissertation of Tianjin Normal University, 2004 (in Chinese with English abstract)

[11] Wang Y(王轶), Zhu J(朱婕), Zhao H-M(赵红梅), Lei D-H(雷盯函), Wang Z-Y(王振英), Peng Y-K(彭永康), Xie C-J(解超杰), Sun Q-X(孙其信), Liu Z-Y(刘志勇), Yang Z-M(杨作民). Screening and identification of the AFLP markers linked to a new powdery mildew resistance gene in wheat cultivar Brock. J Mol Cell Biol (分子细胞生物学报), 2008, 41(4): 294-300 (in Chinese with English abstract)

[12] Sharp P G, Kreis M, Shewry P R, Gale M D. Resistance to Puccinia recondite tritici in synthetic hexaploid wheats. Indian J Genet, 1988, 58: 263-269

[13] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[14] Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697

[15] Eujayl I, Sorrells M E, Baum M. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399-407

[16] Gao L-L(高亮亮). Development of AFLP and Derived SCAR Marker for Powdery Mildew Disease Resistance Gene PmWE75 in Wheat. MS Dissertation of China Agricultural University, 2007 (in Chinese with English abstract)

[17] Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep 3rd edn. Cambridge, Masachussetts, USA: Whitehead Institute, 1992

[18] Sourdille P, Singh S, Cadalen T. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12-25

[19] Chen Q-C(陈企村), Duan S-K(段双科), Li Z-Q(李振岐). Research advances on components and external factors of slow-mildewing resistance in wheat. J Triticeae Crops (麦类作物学报), 2004, 24(1): 86-89 (in Chinese with English abstract)

[20] Qiu Y-C(邱永春), Zhang S-S(张书绅). Research on powdery mildew resistant genes and their molecular markers in wheat. J Triticeae Crops (麦类作物学报), 2004, 24(2): 127-132 (in Chinese with English abstract)

[21] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114

[22] McIntosh R A, Baker E P. Cytogenetic studies in wheat: IV. Chromosome location and linkage studies involving the Pm2 locus for powdery mildew resistance. Euphytica, 1970, 19: 71-77

[23] Qiu Y C, Sun X L, Zhou R H, Kong X Y, Zhang S S, Jia J Z. Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun, 2006, 34: 1267-1273

[24] Miranda L M, Murphy J P, Leath S, Marshall D S. Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Cross. to common wheat. Theor Appl Genet, 2006, 113: 1497-1504

[25] Miranda L M, Murphy J P, Marshall D S, Cowger C, Leath S. Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 1451-1456

[26] Paillard S, Goldringer I, Enjalbert J, Doussinault G, de Vallavieille-Pope C, Brabant P. Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management: I: Is specific seedling resistance selected? Theor Appl Genet, 2000, 101: 449-456

[27] Li H J, Conner R L, Liu Z Y, Li Y W, Chen Y, Zhou Y L, Duan X Y, Shen T M, Chen Q, Graf R J, Jia X. Characterization of wheat-triticale lines resistant to powdery mildew, stem rust, stripe rust, wheat curl mite, and limitation on spread of WSMV. Plant Dis, 2007, 91: 368-374

[28] Zhao J(赵军), Wang J(王军), Ni Z-F(倪中福), Xie C-J(解超杰), Yang Z-M(杨作民), Liu Z-Y(刘志勇), Sun Q-X(孙其信). Identification and tagging of the wheat powdery mildew resistance gene in wheat cultivar Grandin. J Triticeae Crops (麦类作物学报), 2007, 27(4): 570-576 (in Chinese with English abstract)
[1] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[2] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[3] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[4] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[5] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[6] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[7] 刘天鹏,董孔军,董喜存,何继红,刘敏轩,任瑞玉,张磊,杨天育. 12C6+离子束辐照糜子诱变突变群体的构建与SSR分析[J]. 作物学报, 2018, 44(01): 144-156.
[8] 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102.
[9] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[10] 孙子淇,张新友,徐静,张忠信,刘华,严玫,董文召,黄冰艳,韩锁义,汤丰收,刘志勇. 河南省审定花生品种的指纹图谱构建[J]. 作物学报, 2016, 42(10): 1448-1461.
[11] 乔麟轶,常建忠,郭慧娟,高建刚,郑军,畅志坚. 小麦全基因组NBS类R基因分析及2AL染色体NBS-SSR特异标记开发[J]. 作物学报, 2016, 42(06): 795-802.
[12] 秦金燕,李在峰,闫晓翠,苏集华,姚占军,刘大群. 小麦抗病品系5R625抗叶锈病基因的分子鉴定[J]. 作物学报, 2015, 41(04): 651-657.
[13] 姜延涛,许韬,段霞瑜*,周益林. 品种混种控制小麦白粉病及其对小麦产量和蛋白质含量的影响[J]. 作物学报, 2015, 41(02): 276-285.
[14] 李建波,乔麟轶,李欣,张晓军,詹海仙,郭慧娟,任永康,畅志坚. 小麦–中间偃麦草渗入系抗白粉病基因PmCH7124的分子定位[J]. 作物学报, 2015, 41(01): 49-56.
[15] 姜朋,陈小霖,张平平,张鹏,姚金保,马鸿翔. 宁麦9号对其衍生品种的遗传贡献[J]. 作物学报, 2014, 40(05): 830-837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!