欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1620-1627.doi: 10.3724/SP.J.1006.2009.01620

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析

张龙雨,李红霞,张改生*,王俊生,韩艳芬,袁正杰,牛娜,马守才   

  1. 西北农林科技大学/山西省作物杂种优势研究与利用重点实验室/教育部小麦育种工程研究中心,陕西杨凌712100
  • 收稿日期:2009-02-24 修回日期:2009-04-08 出版日期:2009-09-12 网络出版日期:2009-07-03
  • 通讯作者: 张改生,E-mail: zhanggsh@public.xa.sn.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)重点专项(2009AA101102),山西省13115科技创新工程重大科技专项(2007ZDKG-02),国家杨凌农业生物技术育种中心专项(99-1A):西北农林科技大学拔尖人才支持计划项目资助。

Cloning and Expression Analysis of cMDH Gene Related to Cytoplasmic Male Sterile Wheat  with Aegilops kotschyi Aytoplasm

ZHANG Long-Yu,LI Hong-Xia,ZHANG Gai-Sheng*,WANG Jun-Sheng,HAN Yan-Fen,YUAN Zheng-Jie,NIU Na,MA Shou-Cai   

  1. Key Laboratory of Crop Heterosis of Shaanxi Province,Northwest A&F University/Wheat Breeding Engineering Research Center,Ministry of Education,Yangling 712100,China
  • Received:2009-02-24 Revised:2009-04-08 Published:2009-09-12 Published online:2009-07-03
  • Contact: ZHANG Gai-Sheng,E-mail: zhanggsh@public.xa.sn.cn

摘要:

为深入研究黏类小麦雄性不育的分子遗传机制,利用抑制差减杂交技术构建了黏类小麦育性相关基因的二核期SSH文库。经文库筛选后,得到一个在可育文库中表达的与胞质苹果酸脱氢酶基因同源的EST序列。以该EST序列为信息探针, 经电子克隆、RT-PCRPCR克隆与序列分析,获得了小麦胞质苹果酸脱氢酶(cytosolic malate dehydrogenases, cMDH)基因的cDNADNA序列,利用荧光定量PCR技术对该基因在不育株和可育株花药中的表达进行了分析,并比较了MDH在小麦不育株和可育株中的活性变化。结果表明,该基因的cDNA序列长1 213 bp,编码333个氨基酸;DNA序列长2 908 bp,含有7个外显子和6个内含子;该基因在不育株和可育株花药发育三个时期(单核、二核和三核)的表达均表现为先升后降的模式,而且该基因在不育株花药发育的二核期和三核期的表达相对于可育株被明显抑制;MDH在小麦不育株和可育株中的活性变化趋势与定量结果一致。推测该基因在花粉发育早期表达,它的下调表达可能影响了小麦雄蕊发育过程中的能量供应而导致雄性不育。

关键词: 小麦, 胞质苹果酸脱氢酶基因, 克隆, 荧光定量PCR

Abstract:

Male sterility withAegilops kotschyi cytoplasmhas a great application potential in hybrid wheat (Triticum aestivum L.) breeding for its stable sterility and broad-spectrum of restoring gene resources. To furtherreveal the genetic mechanism of male sterile with Ae. kotschyi cytoplasm, we employed a male sterile line ms (Kots)-90-110(A) and its near isogenic line BC4F1 (fertility restored by rk5451) to construct sterile and fertile cDNA libraries by suppression subtractive hybridization (SSH) in binucleate stage of anther development. Comparative analysis of differentially expressed EST sequences revealed that one EST highly similar to cytosolic malate dehydrogenases gene was identified from the fertile SSH-cDNA library. Then, The EST sequence was used as a querying probe to blast the Genbank databases. Based on the assembled homologous cDNA sequence, both cDNA and DNA sequences encoding a cytosolic malate dehydrogenases were isolated and characterized by PCR and sequence analysis. Furthermore, expression characteristics of the gene between male sterile and fertile anthers were analyzed via real-time PCR. In this study, the cDNA sequence was 1213 bp in length and the open reading frame encoded a peptide of 333 amino acids. The DNA sequence was 2908 bp in length, which contained seven extrons and six introns. According to expression analysis, the expression of this gene in fertile anthers was much higher than that in sterile anthers at binucleate and trinucleate stage during anther development. The trend of MDH activity was consistent with the quantitative results between fertility and sterility. Therefore, the gene is conjectured to be an early expression gene and its down-regulated expression may affect energy supply during stamen growth in sterile line anthers resulting in male sterility in wheat.

Key words: Wheat, Cytosolic malate dehydrogenases gene, Cloning, Real-time PCR

[1]Ocheretina O, Scheibe R. Cloning and sequence analysis of cDNAs encoding plant cytosolic MDH. Gene, 1997, 199: 145-148

[2]Bryan J K. Biosynthesis and regulation of anino acid. In: Boner J, Varner J E, eds. Plant Biochemistry, 3nd ed. New York: Academic Press, 1976. pp 351-371

[3]Mauseth J D. Botany: An Introduction to Plant Biology. Florida: Saunders College Publishing, 1991. pp 272-296

[4]Hu J-G(胡建广), Zhao X-S(赵相山), Liu J(刘军), Yuan Z-Q(袁自强), Yang J-S(杨金水). Isolation and characterization of a cDNA encoding maize cytosolic malate dehydrogenase. Acta Bot Sin (植物学报), 1999, 41(1): 40-44 (in Chinese with English abstract)

[5]Jiang R-H(姜瑞华), Lin C-F(林长发), Shen G-A(申国安), Qian M(钱旻), Wang D(王东), Du X-L(杜喜玲), Huang J(黄骥), Yang J-S(杨金水). Cloning of rice malate dehydrogenase and expression in E. coli. J Fudan Univ (Nat Sci)(复旦学报自然科学版), 2002, 41(1): 67-69 (in Chinese)

[6]Lin Z B, Xu Y, Ma Q H, D Y. Cloning and evolutionary analysis of a partial cytosolic malate dehydrogenase cDNA from wheat. J Agric Biotechnol, 2004, 12: 38-42

[7]Zhang G-S(张改生), Yang T-Z(杨天章). A preliminary study on the male sterile lines of wheat with Ae. ventricosa, Ae. kotscgyi and Ae. variabilis cytoplasms. Acta Agron Sin (作物学报), 1989, 15(1): 1-10 (in Chinese with English abstract)

[8]Li H-X(李红霞), Zhang L-Y(张龙雨), Zhang G-S(张改生), Niu N(牛娜), Zhu Z-W(朱展望). Construction on SSH library from fertility-related genes of male sterility of wheat with Aegilops kotschyi cytoplasm. Acta Agron Sin (作物学报), 2008, 34 (6): 965-971 (in Chinese with English abstract)

[9]Zhang C-Y(张驰宇), Xu S-G(徐顺高), Huang X-X(黄新祥). A novel and convenient relative quantitative method of fluoresce-nce real time RT-PCR assay based on slope of standard curve. Prog Biochem Biophys (生物化学与生物物理进展), 2005, 32 (9): 883-887 (in Chinese with English abstract)

[10] Ou-Yang G-C(欧阳光察). Determination of malate dehydrogenase activity. In: Shanghai Society for Plant Physiology. Laboratory Manual for Plant Physiology (植物生理学实验手册). Shanghai: Shanghai Scientific and Technical Publishers, 1985. pp 179-181 (in Chinese)

[11]Zhu G-L(朱广廉), Zhong H-W(钟诲文), Zhang A-Q(张爱琴). Experimental Guide for Plant Physiological (植物生理学实验). Beijing: Peking University Press, 1990. pp 32-34 (in Chinese)

[12] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25: 402-408

[13] Liu W, Saint D A. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem, 2002, 302: 52-59

[14] Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods, 2001, 25: 386-401

[15] Heber U. Metabolite exchange between chloroplasts and cytoplasm. Annu Rev Plant Physiol, 1974, 25: 393-421

[16] Mascarenhas J P. Gene activity during pollen development. Aunu Rev Plant Physiol Plant Mol Biol, 1990, 41: 317-338

[17] Gong H-W(龚宏伟), Ma L-J(马翎健), He B-R(何蓓如), Fan C-Y(范春燕), Wu H(武涵), Li W(李薇). Changes of RNase and protein content in the fertility sensitive period of wheat male sterile lines. Triticeae Crops (麦类作物学报), 2008, 28(1): 31-34 (in Chinese with English abstract)

[18] Wu F(吴峰), Liu Y-M(刘玉梅), Sun D-L(孙德岭), Wu F(吴锋), Chang C-T(常彩涛). Biochemical traits of cytoplasmic male sterile and maintainer lines in hot pepper. Tianjin Agric Sci (天津农业科学), 2008, 14(2): 50-52 (in Chinese with English abstract)

[19] Li P(李平), Liu H-X(刘鸿先), Wang Y-R(王以柔), Zeng S-X(曾韶西), Li M-R(李美如), Zhang X(张旭), Lin D-X(林道宣), Chen Z-M(陈钊明), Liu Y-Z(刘彦卓), Kong Q-N(孔清霓). The fertility expression of dual-purpose genic male sterile line indica rice Pei’ai 64S: Changes of NAD+-MDH and AP isoenzyme during spikelet development. Chin J Rice Sci (中国水稻科学), 1997, 11(2): 83-88 (in Chinese with English abstract)

[20] Zhang M-Y(张明永), Liang C-Y(梁承邺), Huang Y-W(黄毓文), Liu H-X(刘鸿先). Comparison of respiratory pathways of CMS and its maintainer rice (Oryza stativa L.). Acta Phytophysiol Sin (植物生理学报), 1998, 24 (1): 55-58 (in Chinese with English abstract)

[21] Liang C-Y(梁承邺), Chen X-F(陈贤丰), Sun G-C(孙谷畴), Huang Y-W(黄毓文), Lin Z-F(林植芳). Some biochemical metabolic characters in Nongken 58s anthers of Hubei photoperiod sensitive genic male-sterile rice. Acta Agron Sin (作物学报), 1995, 21(1): 64-70 (in Chinese with English abstract)
[22] Yao Y-Q(姚雅琴), Zhang G-S(张改生), Liu H-W(刘宏伟), Wang J-W(王军卫), Liu H-M(刘红梅). Cytomorphology and cytochemical localization of K-type and T-type cytoplasmic male sterile pollens in wheat. Sci Agric Sin (中国农业科学), 2002, 35(2): 123-126 (in Chinese with English abstract)
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[6] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[9] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[10] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[11] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[12] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[13] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!