欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1646-1654.doi: 10.3724/SP.J.1006.2009.01646

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

白肋烟分子标记遗传图谱的构建及部分性状的遗传剖析

蔡长春1,柴利广2,王毅1,徐芳森2,张俊杰1,林国平1,*   

  1. 1中国烟草白肋烟试验站/湖北省烟草科研所,湖北武汉430030;2华中农业大学作物遗传改良重点实验室,湖北武汉430070
  • 收稿日期:2009-02-22 修回日期:2009-04-29 出版日期:2009-09-12 网络出版日期:2009-07-04
  • 通讯作者: 林国平, E-mail: lgpfy@126.com; Tel: 027-83641902
  • 基金资助:

    本研究由国家烟草专卖局(110200202004)资助。

Construction of  Genetic Linkage Map of Burley Tobacco(Nicotiana tabacum L.) and Genetic Dissection of Partial Traits

CAI Chang-Chun1,CHAI Li-Guang2,WANG Yi1,XU Fang-Sen2,ZHANG Jun-Jie1,LIN Guo-Ping1*   

  1. 1 Burley Tobacco Experimental Station of China Tobacco, Hubei Tobacco Research Institute, Wuhan 430030, China; 2 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2009-02-22 Revised:2009-04-29 Published:2009-09-12 Published online:2009-07-04
  • Contact: LIN Guo-Ping, E-mail: lgpfy@126.com; Tel: 027-83641902

摘要:

112AFLP6SRAP标记构建了白肋烟的分子标记遗传连锁图谱,包括22个连锁群(A1~A22),总遗传长度为1 953.6 cM,标记的平均间距为20.5 cM,有25个标记表现偏分离(17.0%),主要集中在第11114连锁群上;利用Windows QTL Cartographer Ver. 2.5软件进行QTL分析,结果表明,共检测到11个主效QTL,其中7个与化学成分性状相关,另外4个与农艺性状相关。与烟碱、总氮和总糖相关的QTL2(btnic1btnic2)2(bttn1bttn2)3(btts1btts2btts3),与株高(btph)、茎围(btls)、节距(btpt)和中部叶长(btl)相关的QTL1个,没有检测到与总钾、总叶数和中部叶宽相关的QTL,其中与烟碱和总氮相关的QTL处于共分离状态(分别为btnic1bttn1),表明烟叶烟碱合成与氮素代谢之间可能存在某种未知的生物学相关性,11个主效QTL对各性状表型变异的贡献率在12.3%~26.4%之间。

关键词: 白肋烟, 遗传连锁图谱, 部分性状, 遗传剖析

Abstract:

The agronomic traits and chemical components are very important factors affecting yield and tobacco leaf quality. Dissecting genetic control of these traits can facilitate the breeding of new tobacco cultivars by marker-assisted selection (MAS). The objective of this study was to identify QTLs controlling partial agronomic traits and chemical components in burley tobacco. A double haploid (DH) population of burley tobacco was used to construct a molecular marker genetic linkage map. The DH population was derived from a cross between high quality cultivar Burley37 with high nicotine content and Burley21 with low nicotine content. The mapping population was planted in main production region of burley tobacco in Hubei province for two years to obtain repetitive phenotype data. On the basis of this map, QTLs for four chemical components including nicotine (NIC), total nitrogen (TN), total sugar (TS), total potassium(TK) of air-cured central tobacco leaf and six agronomic traits including plant height (PH), stalk circumference (LS), distance between nodes (PT), number of total leaf (LN), length of central leaf (L) and width of central leaf (W) were analyzed by using software Windows QTL Cartographer Ver. 2.5. The results showed that a total of 112 AFLP loci and six SRAP loci assembled into 22 linkage groups (A1–A22) composed the whole linkage map spanning 1 953.6 cM with an average distance of 20.5 cM between adjacent loci. There were 25 distortion-segregation loci (17.0%) mainly clustering in linkage groups A1, A11, and A14. A total of eleven main QTLs including seven QTLs influencing chemical components and the other remaining four QTLs conferring agronomic traits were detected. Out of them, two (btnic1 and btnic2) QTLs were detected for NIC, two (bttn1 and bttn2) for TN, three (btts1, btts2, and btts3) for TS, one (btph) for PH, one (btls) for LS, one (btpt) for PT and one (btl) for L. However, no QTL was detected for TK, LN and W. The 11 main QTLs explained 12.3% to 26.4% of phenotypic variation of traits detected. Additionally, btnic1 and bttn1 respectively controlling NIC and TN showed a good co-segregation, indicating that there could be a certain unknown biological relationship between nicotine biosynthesis and nitrogen metabolism in tobacco leaf. The present study would provide a better understanding for the genetic control and further fine mapping of chemical components and agronomic traits in burley tobacco.

Key words: Burley tobacco, Genetic linkage map, Partial traits, Genetic dissection

[1] Galbraith D W, Harkins K R, Maddox J M, Ayres N M, Sharma D P, Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science, 20: 1049-1051



[2] Del Piano L, Abet M, Sorrentino C, Acanfora F, Di Muro A. Genetic variability in Nicotiana tabacum and Nicotiana species as revealed by RAPD markers: 1. Development of the RAPD procedure. Beiträge zur Tabakforschung International (Contributions to Tobacco Research), 2000, 19: 1-15



[3] Julio E, Verrier J L, Dorlhac de Borne F. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006, 112: 335-346



[4] Ren N, Timko M P. AFLP analysis of genetic polymorphism and evolutionary relationships among cultivated and wild Nicotiana species. Genome, 2001, 44: 559-571



[5] Rossi L, Bindler G, Pijnenburg H, Isaac P G, Giraud-Henry I, Mahe M, Orvain C, Gadani F. Potential of molecular marker analysis for variety identification in processed tobacco. Plant Var Seeds, 2001, 14: 89-101



[6] Lin T Y, Kao Y Y, Lin S, Lin R F, Chen C M, Huang C H, Wang C K, Lin Y Z, Chen C C. A genetic linkage map of Nicotiana Plumbaginifolia / Nicotiana Longiflora based on RFLP and RAPD markers. Theor Appl Genet, 2001, 103: 905-911



[7] Nishi T, Tajima T, Noguchi S, Ajisaka H, Negishi H. Identification of DNA markers of tobacco linked to bacterial wilt resistance. Theor Appl Genet, 2003, 106: 765-770



[8] Xiao B-G(肖炳光), Xu Z-L(徐照丽), Chen X-J(陈学军), Shen A-R(申爱荣), Li Y-P(李永平), Zhu J(朱军). Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tab Sin (中国烟草学报), 2006, 12(4): 35-40 (in Chinese with English abstract)



[9] Xiao B-G(肖炳光), Lu X-P(卢秀萍), Jiao F-C(焦芳蝉), Li Y-P(李永平), Sun Y-H(孙玉合), Guo Z-K(郭兆奎). Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin (作物学报), 2008, 34(10): 1762-1769(in Chinese with English abstract)



[10] Julio E, Denoyes-Rothan B, Verrier J L, Dorlhac de Borne F. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69-91



[11] Bindler G, Rutger van der Hoeven, Gunduz I, Plieske J, Ganal M, Rossi L, Gandani F, Donini P. A microsatellite marker based linkage map of tobacco. Theor Appl Genet, 2007, 114: 341-349



[12] Ma H-B(马红勃), Qi J-M(祁建民), Li Y-K(李延坤), Liang J-X(梁景霞), Wang T(王涛), Lan T(兰涛), Chen S-H(陈顺辉), Tao A-F(陶爱芬), Lin L-H(林荔辉), Wu J-M(吴建梅). Construction of a molecular genetic map of tobacco based on SRAP and ISSR markers. Acta Agron Sin (作物学报), 2008, 34(11): 1958-1963(in Chinese with English abstract)



[13] Noguchi S, Tajima T, Yamamoto Y, Ohno T, Kubo T. Deletion of a large genomic segment in tobacco varieties that are resistant to potato virus Y (PVY). Mol Gen Genet, 1999, 262: 822-829



[14] Bai D, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi for resistance to black root rot of tobacco. Theor Appl Genet, 1995, 91: 1184-1189



[15] Julio E, Verrier J L, Dorlhac de Borne F. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabocum L. Theor Appl Genet, 2006, 112: 335-346



[16] Jonhson E S, Wernsman E A. Origin of the black shank resistance gene, Ph, in tobacco cultivar Coker 371-Gold. Plant Dis, 2002, 86: 1080-1084



[17] Yi H Y, Rufty R C, Wernsman E A. Mapping the root-knot nematode resistance gene (Rk) in tobacco with RAPD markers. Plant Dis, 1998, 82: 1319-1322



[18] Yi Y H. RAPD markers elucidate the origin of the root-knot nematode resistance gene (Rk) in tobacco. Tob Sci, 1998, 42: 58-63



[19] Chai L-G(柴利广), Zhang J-J(张俊杰), Lin G-P(林国平), Wang Y(王毅), Xu F-S(徐芳森). Construction of two DH populations and identification of chromosome ploidy in burley tobacco. Acta Tab Sin (中国烟草学报), 2007, 13(2): 33-37(in Chinese with English abstract)



[20] Li J(李佳), Shen B-Z(沈斌章), Han J-X(韩继祥), Gan L(甘莉). A effective procedure for extracting total DNA in rape. J Huazhong Agric Univ (华中农业大学学报), 1994, 13(5): 521-523(in Chinese with English abstract)



[21] Lu G-Y(陆光远), Yang G-S(杨光圣), Fu T-D(傅廷栋). Molecular markers for the dominant genic male sterility gene and the suppressor gene in Brassica napus and their applications.PhD Dissertation of Huazhong Agricultural University, 2003. pp 38-40 (in Chinese with English abstract)



[22] Li G, Qurios C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor Appel Genet, 2001, 103: 455-461



[23] Lincoln S, Daly M, Lander E S. Construction Genetic Maps with Mapmaker/Exp 3.0. Whitehead Institution Technical Report. 2nd edn. Cambridge, MA: Whitehead Institution, 1992. pp 1-49



[24] Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) (遗传), 2003, 25(3): 317-321 (in Chinese with English abstract)



[25] Wang Z-D(王志德), Wang Y-Y(王元英), Mou J-M(牟建民), Dai P-G(戴培刚), Liu Y-H(刘艳华), Qian Y-M(钱玉梅), Kong F-Y(孔凡玉), Zhang H-B(张怀宝). Descriptors and Data Standard for Tobacco (Nicotiana spp.). Beijing: China Agriculture Press, 2006. pp 12-36 (in Chinese)



[26] Determination of total plant alkaloid of tobacco and tobacco products-continuous flow method. Industry standard of People Republic China (中华人民共和国行业标准), YC/T160-2002, Beijing: Standards Press of China, 2002. pp 1-6(in Chinese)



[27] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1993, 136: 1457-1468



[28] Cai C C, Tu J X, Fu T D, Chen B Y. The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L. Russian J Genet, 2008, 44: 326-333

Edwards M D, Helentjaris T, Wright S. Molecular-marker-facilitated investigation if quantitative trait loci in maize: 4.Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet, 1992, 83: 765-774

[1] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[2] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[3] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[4] 吕品,于海峰,于志贤,张永虎,张艳芳,王婷婷,侯建华. 向日葵高密度遗传连锁图谱构建及两种水分条件下芽期性状的QTL分析[J]. 作物学报, 2017, 43(01): 19-30.
[5] 吴建忠,黄文功,康庆华,赵东升,袁红梅,于莹,刘岩,姜卫东,程莉莉,宋喜霞,赵茜,吴广文,关凤芝*. 亚麻遗传连锁图谱的构建[J]. 作物学报, 2013, 39(06): 1134-1139.
[6] 陈美霞, 祁建民, 危成林, 谢增荣, 林培清, 兰涛, 陶爱芬, 陈涛. 红麻五个质量性状在遗传连锁图谱中的初步定位[J]. 作物学报, 2011, 37(01): 165-169.
[7] 周斌,邢邯,陈受宜,盖钧镒. 大豆重组自交系群体NJRIKY遗传图谱的加密及其应用效果[J]. 作物学报, 2010, 36(1): 36-46.
[8] 刘新龙,毛钧,陆鑫,马丽,Karen Sarah AITKEN,Phillip Andrew JACKSON,蔡青,范源洪. 甘蔗SSR和AFLP分子遗传连锁图谱构建[J]. 作物学报, 2010, 36(1): 177-183.
[9] 赵丹,程须珍,王丽侠,王素华,马燕玲. 绿豆遗传连锁图谱的整合[J]. 作物学报, 2010, 36(06): 932-939.
[10] 马红勃;祁建民;李延坤;梁景霞;王涛;兰涛;陈顺辉;陶爱芬;林荔辉;吴建梅. 烟草SRAP和ISSR分子遗传连锁图谱构建[J]. 作物学报, 2008, 34(11): 1958-1963.
[11] 陈利;张正圣;胡美纯;王威;张建;刘大军;郑靓;郑风敏;马靖. 陆地棉遗传图谱构建及产量和纤维品质性状QTL定位[J]. 作物学报, 2008, 34(07): 1199-1205.
[12] 邢光南;赵团结;盖钧镒. 关于Mapmaker/Exp遗传作图中标记分群和排序操作技术的讨论[J]. 作物学报, 2008, 34(02): 217-223.
[13] 陈旭;李新海;郝转芳;王振华;田清震;李明顺;白丽;张世煌. 玉米抗矮花叶病QTL定位[J]. 作物学报, 2005, 31(08): 983-988.
[14] 朱大恒;刘伟;岳彩鹏;宋淑红;沈光林;金保锋. 白肋烟贮藏过程中化学成分变化的研究[J]. 作物学报, 2005, 31(07): 864-868.
[15] 王凤格;刘贤德;王振华;张世煌;李新海;袁力行;韩晓清;李明顺. 玉米抗甘蔗花叶病毒QTL的初步研究[J]. 作物学报, 2003, 29(01): 69-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!