欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1798-1805.doi: 10.3724/SP.J.1006.2009.01798

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦成熟胚脱分化过程中生长素相关基因的表达分析

陈军营,马平安,赵一丹,朱雪萍,崔琰,张艳敏,陈新建*   

  1. 河南农业大学农学院,河南郑州450002
  • 收稿日期:2009-03-25 修回日期:2009-06-25 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 陈新建, E-mail: xinjian@371.net; Tel: 0371-63558722
  • 基金资助:

    本研究由国家转基因植物研究与产业化专项基金(JY03-B19-2)和河南省杰出人才创新基金(022100090)资助。

Expression of Auxin-Related Genes during Dedifferentiation of Mature Embryo in Wheat

CHEN Jun-Ying,MA Ping-An,ZHAO Yi-Dan,ZHU Xue-Ping,CUI Yan,ZHANG Yan-Min,CHAN Xin-Jian*   

  1. College of Agronomy,Henan Agricultural University,Zhengzhou 450002,China
  • Received:2009-03-25 Revised:2009-06-25 Published:2009-10-12 Published online:2009-08-07
  • Contact: CHEN Jian-Xin,E-mail: xinjian@371.net; Tel: 0371-63558722

摘要:

利用Affymetrix小麦基因芯片研究了小麦成熟胚在MS+2,4-D (2 mg L-1)培养基上脱分化过程种基因表达变化,用NCBIDATFDRTF等生物信息学相关网站对基因表达信息进行处理,并针对生长素相关基因的变化情况进行分析,结果表明,有80个生长素相关基因在小麦成熟胚脱分化过程中的26122472 h等不同时间点,至少发生了一次有意义的表达变化,其中41个在整个过程中上调,29个下调;10个在不同时点分别表现上调或下调。这些基因涉及到生长素的运输、响应、诱导、合成和降解等多个生物学过程。对BG906698BQ281752CD454626CD864552CD938626BJ233383AY543630基因的半定量RT-PCR验证结果表明它们的表达变化与基因芯片的结果基本一致。质膜H+-ATPase基因(AY543630)2 h时间点即有较高强度表达,然后下降,24 h降至最低水平,表明该基因在小麦成熟胚脱分化的启动中可能有重要作用。

关键词: 生长素相关基因, 小麦成熟胚脱分化, 质膜H+-ATPase基因, 基因芯片

Abstract:

The quality of dedifferentiation determines the capacity of callus regeneration. Mature embryo is considered to be of the most potential for genetic transformation, but its transformation efficiency is still lower now.To elucidate the mechanism of mature wheat embryo dedifferentiation, we studied the expression profile of genes in dedifferentiation using Affymetrix microarray technique in mature embryos of wheat cultivar Yumai 18 cultured on MS medium supplemented with 2 mg L-1 of 2,4-dichlorophenolxyacetic acid (2,4-D) at different time points of 2, 6, 12, 24, and 72 h. Using online tools at NCBI, DATF, and DRTF websites, 80 auxin-related genes changed at least at one time point were detected with the 41 up-regulated and 29 down-regulated during the whole period. The remained 10 genes showed up-regulation or down-regulation at different time points. Up-regulated genes were more than down-regulated genes, especially at 24 h and 72 h points. These genes were involved in several biological processes, such as transportation, response, induction, synthesis, and degeneration of auxin. Using semi-quantative RT-PCR technique, the expression changes of seven genes, coded as BG906698, BQ281752, CD454626, CD864552, CD938626, BJ233383, and AY543630, were confirmed to be consistent with the result by microarray. Gene of plasma membrane (PM) H+-ATPase (GenBank accession number: AY543630) expressed at a high level at the 2 h time point, and then decreased gradually till the minimum at the 24 h time point. This result implied that PM H+-ATPase gene might be a trigger in dedifferentiation of mature embryo in wheat.

Key words: Auxin-related gene, Dedifferentiation of mature embryo, wheat, Plasma membrane H+-ATPase gene, Microarray

[1] Chen J Y, Yue R Q, Xu H X, Chen X J. Study on plant regeneration of wheat mature embryos under endosperm supported culture. Agric Sci China, 2006, 5: 572-578
[2] Dudits D, Bogre L, Gyorgyey J. Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci, 1991, 99: 475-484
[3] Dudits D, Györgyey J, Bögre L, Bakó L. Molecular biology of somatic embryogenesis. In: Thorpe T A ed. In vitro Embryogenesis in Plants. Dordrecht, the Netherlands: Kluwer Academic Publisher, 1995. pp 267-308
[4] Che P, Gingerich D J, Lall S, Howell S H. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell, 2002, 14: 2771-2785
[5] Che P, Lall S, Nettleton D, Howell S H. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol, 2006, 141: 620-637
[6] Skoog F, Miller G O. Chemical regulations of growth and organ formation in plant tissue cultured in vitro. Symp Soc Exp Biol, 1957, 11: 118-130
[7] Arkin A, Ross J, McAdams H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 1998, 149: 1633-1648
[8] Li L, Roden J, Shapiro B E, Wold B J, Bhatia S, Forman S J, Bhatia R, 2005, 7: 48-56. Reproducibility, fidelity, and discriminant validity of mRNA amplification for microarray analysis from primary hematopoietic cells. J Mol Diagn
[9] Collins J F. Gene chip analyses reveal differential genetic responses to iron deficiency in rat duodenum and jejunum. Biol Res, 2006, 39: 25-37
[10] Marchant A, Kargul J, May S T, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett M J. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J, 1999, 18: 2066-2073
[11] Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 441-445
[12] Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435: 446-451
[13] Ouyang J, Shao X, Li J Y. Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J, 2000, 24: 327-333
[14] Guilfoyle T J, Hagen G. Auxin response factors. J Plant Growth Regul, 2001, 10: 281-291
[15] Abel S, Theologis A. Early genes and auxin action. Plant Physiol, 1996, 111: 9-17
[16] Hager A, Menzel H, Krauss A. Experiments and hypothesis concerning the primary action of auxin in elongation growth. Planta, 1971, 100: 47-75 Hager A. Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: Historical and new aspects. Plant Res, 2003, 116: 483-505
[1] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[2] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[3] 赵仁欣,李森业,郭瑞星,曾新华,文静,马朝芝,沈金雄,涂金星,傅廷栋,易斌. 利用SNP芯片构建我国冬油菜参试品种DNA指纹图谱[J]. 作物学报, 2018, 44(7): 956-965.
[4] 武炳瑾,简俊涛,张德强,马文洁,冯洁,崔紫霞,张传量,孙道杰*. 利用90k芯片技术进行小麦穗部性状QTL定位[J]. 作物学报, 2017, 43(07): 1087-1095.
[5] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[6] 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135.
[7] 闫贵欣,陈碧云,许鲲,高桂珍,吕培军,伍晓明,李锋,李俊. 不同施氮水平下甘蓝型油菜发育种子中基因表达谱差异分析[J]. 作物学报, 2012, 38(11): 2052-2060.
[8] 陈小平, 朱方何, 洪彦彬, 刘海燕, 张二华, 周桂元, 李少雄, 钟旎, 温世杰, 李杏瑜, 梁炫强. 两个南方花生主栽品种荚果与叶片基因表达谱分析[J]. 作物学报, 2011, 37(08): 1378-1388.
[9] 李龙云, 于霁雯, 翟红红, 黄双领, 李兴丽, 张红卫, 张金发. 利用基因芯片技术筛选棉纤维伸长相关基因[J]. 作物学报, 2011, 37(01): 95-104.
[10] 官梅,李栒,官春云. 利用基因芯片技术研究甘蓝型油菜油酸合成中差异表达基因[J]. 作物学报, 2010, 36(06): 968-978.
[11] 王俊美,刘红彦,徐红明,王飞,高素霞,康振生. 应用基因芯片分析红蚰麦白粉菌胁迫条件下的基因表达谱[J]. 作物学报, 2009, 35(7): 1188-1193.
[12] 马廷臣,陈荣军,余蓉蓉,曾汉来,张端品. 全基因组分析PEG胁迫下水稻根系转录因子表达变化[J]. 作物学报, 2009, 35(6): 1030-1037.
[13] 邱立友,李富欣,宜朝龙,马称心,杨超,冯云,刘国顺,赵会杰. 皖南不同类型土壤植烟成熟期烟叶的基因差异表达和显微结构的比较[J]. 作物学报, 2009, 35(4): 749-754.
[14] 李永春;孟凡荣;王潇;陈雷;任江萍;牛洪斌;李磊;尹钧. 水分胁迫条件下“洛旱2号”小麦根系的基因表达谱[J]. 作物学报, 2008, 34(12): 2126-2133.
[15] 徐孟亮;陈荣军;ROCHA Pedro;李落叶;王曼玲;徐国云;夏新界. 一个新的水稻逆境响应基因OsMsr1的表达与克隆[J]. 作物学报, 2008, 34(10): 1712-1718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!