欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1030-1037.doi: 10.3724/SP.J.1006.2009.01030

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

全基因组分析PEG胁迫下水稻根系转录因子表达变化

马廷臣12,陈荣军2,余蓉蓉2,曾汉来1,张端品1*   

  1. 1华中农业大学作物遗传改良国家重点实验室,湖北武汉430070;2中国科学院亚热带农业生态研究所,湖南长沙410125
  • 收稿日期:2008-12-10 修回日期:2009-02-17 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 张端品,E-mail:tingchenm@163.com
  • 基金资助:

    本研究由中国科学院知识创新工程领域前沿项目(0551033)资助。

Global Genome Expression Analysis of Transcription Factors under PEG Osmotic Stress in Rice Root System

MA Ting-Chen12,CHEN Rong-Jun2,YU Rong-Rong2,ZENG Han-Lai1,ZHANG Duan-Pin1*   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University,Wuhan 430070,China;2Institute of Subtropical Agriculture,Chinese Academy of Sciences,Changsha 410125,China
  • Received:2008-12-10 Revised:2009-02-17 Published:2009-06-12 Published online:2009-04-16
  • Contact: ZHANG Duan-Ping,E-mail:tingchenm@163.com

摘要:

转录因子在植物抗逆境中起重要的调节作用。本文使用Affymetrix水稻60K芯片全基因组研究PEG胁迫时2个耐旱性不同的水稻品种的转录因子及转录因子家族的变化,结果表明,在PEG胁迫下,耐旱品种湘丰早119根系共有95个转录因子转录本与对照处理比较表达发生变化(24个为转录水平下调表达, 71个为转录水平上调表达);干旱敏感品种爱华5号根系有129个转录因子转录本表达发生变化(转录水平上调的转录因子转录本60个,转录水平下调的转录因子转录本69个);2个品种PEG胁迫响应转录因子隶属的转录因子家族都为30个,但各转录因子所属的30个家族并不完全相同;PEG胁迫逆境中,PEG胁迫响应转录因子转录本表现出品种特异性,湘丰早119有72个为特异响应转录本,爱华5号有106个特异响应的转录因子转录本;2个品种在干旱胁迫下响应的转录因子有23个为重叠转录本,其中有16个在转录水平上调表达,7个在转录水平下调表达;2个品种的PEG胁迫响应转录因子基因在染色体上的分布不同,重叠转录因子基因主要位于第2染色体0.432~26.139 Mb和第5染色体0.076~20.597 Mb之间。

关键词: 水稻, 根系, 基因芯片, 转录因子, 耐旱性差异

Abstract:

Transcription factors play an important role in plant stress tolerance. The Affymetrix rice genome arrays were used to research the expression change of transcription factors and their families in two rice cultivars with different levels of drought tolerance under PEG osmotic stress. Results showed that a total of 95 transcripts encoding transcription factors (24 transcripts were down-regulated and 71 transcripts were up-regulated at the transcription level) in Xingfengzao 119 and 129 transcripts (69 transcripts were down-regulated and 60 transcripts were up-regulated at the transcription level) in Aihua 5 were affected by PEG osmotic stress. Transcription factors transcripts in response to PEG osmotic stresses were belonged to 30 transcription factors families for each of two cultivars, but there was a difference between the two 30 families. The transcription factors transcripts for expressed cultivar specific-response to PEG osmotic stress, with 72 transcripts for Xingfengzao 119 and 106 for Aihua 5. There was an overlap of transcripts in response to PEG osmotic stress between Xingfengzao 119 and Aihua 5, with the 16 and 7 up-regulated and the down-regulated at the transcription level, respectively. Distribution of PEG osmotic stress regulating genes of two cultivars on rice chromosome was different and their transcripts overlapped were located in 0.432 to 26.139 Mb of chromosome 2 and 0.076 to 20.597 Mb of chromosome 5.

Key words: Rice, Root system, Microarray, Transcription factors, Different drought tolerance


[1] Xiao Y-S(肖用森), Wang Z-Z(王正直), Guo S-C(郭绍川). The relationships between free praline and membrane lipid peroxidation in rice seedlings under osmotic stress. J Wuhan Bot Res (武汉植物研究), 1996, (4): 16-20 (in Chinese with English abstract)

[2] Liu E-E(刘娥娥), Zong H(宗会), Guo Z-F(郭振飞), Li Y-C(黎用朝). Effects of drought, salt and chilling stress on praline accumulation in shoot of rice seedlings. J Top Subtrop Bot (热带亚热带植物学报), 2000, 8(3):235-238 (in Chinese with English abstract)

[3] Cai Y-P(蔡永萍), Yang Q-G(杨其光), Huang Y-D(黄义德). Effect of rice cultivated under paddy and upland condition on photosynthesis and senescence of flag leaf and activity of root system after heading. Chin J Rice Sci (中国水稻科学), 2000, 14(4):219-224 (in Chinese with English abstract)



[4] Lu S-Y(卢少云), Guo Z-F(郭振飞), Peng X-X(彭新湘),



[5] Dai G-X(戴高兴), Peng K-Q(彭克勤), Xiao L-T(萧浪涛), Deng G-F

[6] Zhang Y-P(张玉屏), Li J-C(李金才), Huang Y-D(黄义德), Huang W-J(黄文江). Effect of water stress on the growth and some physiological characteristics of root system in rice. J Anhui Agric Sci (安徽农业科学), 2001, 29(1): 58-59(in Chinese with English abstract)

[7] Li Z-C(李自超), Liu W-X(刘文欣), Zhao D-L(赵笃乐). Comparison of growing tendency during young seedling between paddy rice and upland rice under PEG water stress. J China Agric Univ (中国农业大学学报), 2001, 6(3): 16-20 (in Chinese with English abstract)

[8] Li F(李锋), Li M-Y(李木英), Pan X-H(潘晓华), Zhu A-F(朱安繁). Biochemical and physiological characteristics in seedlings roots of different rice cultivars under low-phosphorus stress. Chin J Rice Sci (中国水稻科学), 2004, 18(1): 48-52 (in Chinese with English abstract)

[9] Zhao J-F(赵俊芳), Yang X-G(杨晓光), Chen B(陈斌). Effects of different irrigation treatments on root growth and water use efficiency of upland rice. Chin J Agrometeorol (中国农业气象), 2004, 25(4): 44-48 (in Chinese with English abstract)

[10] Li X-Y(李贤勇), He Y-X(何永歆), Li S-W(李顺武), Wang C-T(王楚桃). Studies on the agricultural regulation to drought in rice. Southwest China J Agric Sci (西南农业学报), 2005, 18(3): 244-249 (in Chinese with English abstract)

[11] Liu Q, Zhao N M, Yamaguch-Shmozaki K, Shinozaki K. Regulatory role of DREB transcription factors in plant drought, salt and cold tolerance. Chin Sci Bull, 2000, 45(11): 970-975

[12] Wei M(魏敏), Xiong J-H(熊建华), Li Y-S(李阳生), Fu B-Y(傅彬英). Study on glycogen synthase kinase gene Expression variation under drought stress in rice by Real-Time PCR. Chin J Rice Sci (中国水稻科学), 2006, 20(6): 567-571 (in Chinese with English abstract)

[13] Nover L, Bharti K, Döring P, Mishra S K, Ganguli A, Scharf K D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 2001, 6: 177-189

[14] Singh K B, Foley R C, Oñate-Sánchez Luis. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol, 2002, 5: 430-436

[15] Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K A, Dangl J L, Dietrich R A. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet, 2000, 26: 403-410

[16] Aharoni A, Dixita S, Jetterb R, Thoenesa E, Arkela G, Pereiraa A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16: 2463-2480

[17] Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196-1200

[18] Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130: 639-648

[19] Kim S, Kang J Y, Cho D I, Park J H, Kim S Y. ABF2, an ABRE binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004, 40: 75-87

[20] Kim S. The role of ABF family bZIP class transcription factors in stress response. Physiol Plant, 2006, 126: 519-527

[21] Oh S J, Song S I, Kim Y S, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol, 2005, 138: 341-351

[22] Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45: 1042-1052

[23] Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481-2498

[24] Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004, 37: 115-127

[25] Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H J. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001, 13: 889-905

[26] Gergely I, Korcak R F, Faust M. Polyethylene glycol induced water stress effects on apple seedlings. Am Soc Hort Sci, 1980, 105: 854-857
(邓国富). Effect of drought stress simulated by PEG on malonaldehyde, proline contents and superoxide dismutase activity in low potassium tolerant rice seedlings. Chin J Rice Sci (中国水稻科学), 2006, 20(5): 557-559(in Chinese with English abstract)
Li M-Q(李明启), Li Y-C(黎用朝). The activities of protective enzymes of rice seedlings subjected to drought and their relationship to drought tolerance. J South China Agric Univ (华南农业大学学报), 1997, 18(4): 21-25 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!