作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1021-1030.doi: 10.3724/SP.J.1006.2009.01021
钱锦1,2,孙毅2,*,段永红1,2,3
QIAN Jin12,SUN Yi2*,DUAN Yong-Hong123
摘要:
采用特异引物对普通小麦(Triticum aestivum L.) rDNA的ITS区片段进行PCR扩增并测序,通过邻接法聚类分析, 得到3种类型的扩增产物。结果表明,ITS区序列长度是602 bp,其中ITS1和ITS2分别有8个和20个变异位点,ITS区揭示的遗传分化距离变化范围为0~0.038,平均值为0.021。通过从GenBank搜索并下载普通小麦野生近缘种ITS序列与本研究获得的普通小麦ITS序列进行比对,并用MEGA、PAUP、PHYLIP软件分析,按Kimura-2参考模型计算分化距离,以旱雀麦(Bromus tectorum)为外类群邻接法构建聚类树。根据杂交后代具有亲本的ITS序列遗传特点,认为小麦形成较晚,尚未同步进化完全,从分子水平上为普通小麦是异源六倍体提供了证据。通过与其A、B、D基因组可能供体的ITS区序列进行比对分析发现各自有不同程度的变异,认为普通小麦在多倍体形成过程中发生了序列消除现象,结合我们提出的“同步进化”对于不同的基因或者说不同类型的DNA序列是不同步的假说,解释了无法找到真正供体的原因。综上所述,我们认为A、B、D基因组的原初供体可能分别是乌拉尔图小麦(T. urartu)、山羊草(T. speltoides)和节节麦(T. tauschii)。
[1] Kihara H. Discovery of DD analyser, one of the ancestors of T. vulgare. Agric Hort (Tokyo), 1944, 19: 889–890 [2] Kihara H, Okamoto M, Ikegami M, Tabush J, Suemoto H, Yamane Y. Morphology and fertility of five new synthesized hexaploid wheats. Rep Kihara Inst Biol Res Seiken Jiho, 1950, 4: 127–140 (in Japanese) [3] Pathak N. Studies in the cytology of cereals. J Genet, 1940, 39: 437–467 [4] Gill B S, Kimber G. Giemsa C-bandingand the evolution of wheat. Proc Natl Acad Sci USA, 1974, 71: 4086–4090 [5] Jones B L, Lookhart G L, Mak A, Cooper D B. Sequences of purothionins and their inheritance in diploid, tetreploid, and hexapliod wheats. J Hered, 1982, 73: 143–144 [6] Fernandez C R, Hernandez-Lucas C, Carbonero P, Garcia-Olmedo F. Gene expression in allopolyloids: Genetic control of lipopurothionins in wheat. Genetics, 1976, 83: 687–699 [7] Kerby K. A cytological and biochemical characterization of the potential B genome donors to common wheat, Triticum aestivum. PhD Dissertation of University Alberta, Edmonton, 1986 [8] Dvorak J, McGuire P E, Cassidy B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome, 1988, 30: 680–689 [9] Konarev V G, Gavrilyuk I P, Gubareva N K, Peneva T I. About nature and origin of wheat genomes on the biochemistry and immunochemistry of grains. Cereal Chem, 1979, 56: 272–278 [10] Nishikawa K. Species relationships of wheat and its putative ancestors as viewed from isozyme variation. In: Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan, 1983. pp 59–63 [11] Dvorak J, Terlizzi P, Zheng H B, Resta P. The evolution of polyploid wheats: Identification of the A genome donor species. Genome, 1993, 36: 21–30 [12] Xu N-Y(徐乃瑜). Classification, origin and evolution of wheat. J Wuhan Bot Res (武汉植物学研究), 1988, 6(2): 187–194 (in Chinese) [13] Sarkar P, Stebbins G L. Morphological evidence concerning the origin of the B genome in wheat. Am J Bot, 1956, 43: 297–304 [14] Aniol A. A serological investigation of wheat evolution. Z Pflanzenzuecht, 1974, 73: 194–203 [15] Riley R, Unrau J, and Chapman V. Evidence on the origin of the B genome of wheat. J Heredity, 1958, 49: 91–98 [16] Feldman M. New evidence on the origin of the B genome of wheat. In: Proceedings of the 5th International Wheat Genetic Symposium, New Delhi, India, 1978. pp 120–132 [17] Konarev V G. The nature and origin of wheat genomes on the data of grain protein immunochemistry and electrophoresis. In: Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan, 1983. pp 65–75 [18] Gerlach W L, Appels R, Dennis E S, Peacock W J. Evolution and analyses of wheat genomes using highly repeated DNA sequences. In: Proceedings of the 5th International Wheat Genetic Symposium, New Delhi, India, 1978. pp 81–91 [19] Kerby K, Kuspira J. The phylogeny of polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). Genome, 1987, 29: 722–737 [20] Chen Q-F(陈庆富). Inquisition about the origin and evolution of wheat genomes. Guihaia (广西植物), 1997, 17(3): 276–282 (in Chinese with English abstract). [21] Zhang W-J(张文驹), Qu L-J(瞿礼嘉), Gao W(高巍), Gu H-Y(顾红雅), Chen J-K(陈家宽), Chen Z-L(陈章良). ITS1 and ITS2 sequences of four possible donors to bread wheat genome and their phylogenetic relationships. Acta Bot Sin (植物学报), 1998, 40(11): 994–1000 (in Chinese with English abstract) [22] Zhang W-J(张文驹), Qu L-J(瞿礼嘉), Gao W(高巍), Gu H-Y(顾红雅), Chen J-K(陈家宽), Chen Z-L(陈章良). The phylogenetic relationships among the possible donors of B genome of common wheat based on internal transcribed spacer (ITS) sequences. Acta Phytotaxonomica Sin (植物分类学报), 1999, 37(5): 417–424(in Chinese with English abstract) [23] Sun Y(孙毅), Liang A(梁爱华), Wang J(王景雪), Skinner D. A phylogeny study of Medicago species based on ribosomal DNA ITS sequences. Acta Bot Boreal-Occident Sin (西北植物学报), 2003, 23(2): 242–246 [24] Li D Y, Ru Y Y, Zhang X Y. Chromosomal distribution of the 18S-5.8S-26S rDNA loci and heterogeneity of nuclear ITS regions in Thinopyrum intermedium. Acta Bot Sin, 2004, 46: 1234–1241 [25] Wang J-B(王建波), Zhang W-J(张文驹). Concerted evolution of nuclear rDNA in allopolyploid plants. Hereditas (遗传), 2000, 22(1): 54–56 (in Chinese with English abstract) [26] Mc Garrey P, Kaper J M. A simple and rapid method for screening transgenic plant using PCR. Bio/Techniques, 1991, 11: 428–432 [27] Sun Y, Skinner D Z, Liang G H, Hulbert S H. Phylogengtic analysis of sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet, 1994, 89: 26–32 [28] Baldwin G B, Sanderson M J, Porter J M, Wojciechowski M F, Campbell C S, Donoghue M J. The ITS region of nuclear ribosoma DNA: A valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard, 1995, 82: 247–277 [29] Waters E R, Schaal B A. Biased gene conversion is not occurring among rDNA repeats in the Brassica triangle. Genome, 1996, 39: 150–154 [30] Sang T, Crawford D J, Stuessy T F. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA, 1995, 92: 6813–6817 [31] Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA, 1995, 92: 280–284 [32] Liu A-H(刘爱华), Wang J-B(王建波). Sequence elimination and the genomic evolution of allopolyploid plants. J Wuhan Bot Res (武汉植物学研究), 2004, 22(2): 158–162 (in Chinese with English abstract) [33] Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13: 1735–1747 [34] Feldman M, Liu B, Segal G, Abbo S, Levy A A, Vega J M. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1318–1387 [35] Liu B, Vega M J, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops (II): Changes in low-copy coding DNA sequences. Genome, 1998, 41: 535–542 [36] Rudnóy S, Bratek Z, Páldi E, Rácz I, Lásztity D. Studies on chloroplast and nuclear rDNA in hexaploid bread wheat and its relatives. Acta Biol Szegediensis, 2005, 49: 35–36 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[5] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[6] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[7] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[8] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[11] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[12] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|