欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1021-1030.doi: 10.3724/SP.J.1006.2009.01021

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦rDNA的ITS区及其基因组起源

钱锦1,2,孙毅2,*,段永红1,2,3   

  1. 1山西大学生物技术研究所,山西太原030006;山西省农业生物技术研究中心,山西太原030031;3山西农业大学,山西太谷030801
  • 收稿日期:2008-09-23 修回日期:2009-02-17 出版日期:2009-06-12 网络出版日期:2009-03-23
  • 通讯作者: 孙毅,0351-7123546
  • 基金资助:

    本研究由山西省科技基础条件平台建设项目(2005091008-0502)资助。

ITS Region of rDNA in Common Wheat and Its Genome Origins

QIAN Jin12,SUN Yi2*,DUAN Yong-Hong123   

  1. 1Institute of Biotechnology,Shanxi University,Taiyuan 030006,China;2Agri-Biotechnology Research Center of Shanxi Province,Taiyuan 030031,Shanxi,China;3Shanxi Agricultural University,Taigu 030801,China
  • Received:2008-09-23 Revised:2009-02-17 Published:2009-06-12 Published online:2009-03-23
  • Contact: SUN Yi,0351-7123546

摘要:

采用特异引物对普通小麦(Triticum aestivum L.) rDNAITS区片段进行PCR扩增并测序,通过邻接法聚类分析, 得到3种类型的扩增产物。结果表明,ITS区序列长度是602 bp,其中ITS1ITS2分别有8个和20个变异位点,ITS区揭示的遗传分化距离变化范围为0~0.038,平均值为0.021。通过从GenBank搜索并下载普通小麦野生近缘种ITS序列与本研究获得的普通小麦ITS序列进行比对,并用MEGAPAUPPHYLIP软件分析,按Kimura-2参考模型计算分化距离,以旱雀麦(Bromus tectorum)为外类群邻接法构建聚类树。根据杂交后代具有亲本的ITS序列遗传特点,认为小麦形成较晚,尚未同步进化完全,从分子水平上为普通小麦是异源六倍体提供了证据。通过与其ABD基因组可能供体的ITS区序列进行比对分析发现各自有不同程度的变异,认为普通小麦在多倍体形成过程中发生了序列消除现象,结合我们提出的“同步进化”对于不同的基因或者说不同类型的DNA序列是不同步的假说,解释了无法找到真正供体的原因。综上所述,我们认为ABD基因组的原初供体可能分别是乌拉尔图小麦(T. urartu)、山羊草(T. speltoides)和节节麦(T. tauschii)

关键词: 小麦, ITS序列, 同步进化

Abstract:

Wheat, as an allohexaploid, is the most important cereal crop in the world. The origins of the three genomes have been a ‘hot spot’ for many geneticists and phylogeneticists since the famous Japanese geneticist Kihara suggested that wheat genome is composed of chromosomes of A, B and D genomes from three diploid progenitors. The studies on the origins of the three genomes have reported controversial results. Ribosomal DNA (rDNA) internal transcribed spacer (ITS) sequences are ubiquitous in most plants, they have been widely used in plant phylogenetics and systematics studies because of their unique characteristics compared with other types of DNAs. Specific primers were used to amplify the rDNA ITS sequences of common wheat (Triticum aestivum L.) by PCR. The amplified rDNA fragments were sequenced. Three types of ITS sequences were obtained. The results of cluster analysis by neighbor-joining method suggested that the sequence length of wheat ITS region was 602 bp, within which ITS1 and ITS2 had 8 and 20 variation sites, respectively. The range of genetic distances and genetic differentiation varied from 0 to 0.038, with the mean value of 0.021. The ITS sequences of common wheat resulted from this study were compared with those of its wild relatives, downloaded from GenBank, by MEGA, PAUP and PHYLIP programs, and the differentiation distances of ITS were calculated by Kimura-2 model program. A dendrogram was constructed with Bromus tectorum as the out-group. Based on the fact that common wheat had the ITS sequences highly similar to some of its wild relatives, we arrived at a conclusion that the formation of its genome is relatively recent events and the concerted evolution in its genome is incomplete, which provided the evidence at molecular level for that common wheat (Triticum aestivum L.) is an allohexaploid. By contrastive analysis to ITS sequences of common wheatandthe suspected donators of its genomes, we proposed that the most probable original donators of A, B, D genomes maybe T.urartu, T. speltoides, T. tauschii, respectively. We also proposed that the ‘concerted evolution’ is not concerted if we take various types of genes or DNA fragments into account.

Key words: Wheat, internal transcribed spacer(ITS), concerted evolution


[1] Kihara H. Discovery of DD analyser, one of the ancestors of T. vulgare. Agric Hort (Tokyo), 1944, 19: 889–890

[2] Kihara H, Okamoto M, Ikegami M, Tabush J, Suemoto H, Yamane Y. Morphology and fertility of five new synthesized hexaploid wheats. Rep Kihara Inst Biol Res Seiken Jiho, 1950, 4: 127–140 (in Japanese)

[3] Pathak N. Studies in the cytology of cereals. J Genet, 1940, 39: 437–467

[4] Gill B S, Kimber G. Giemsa C-bandingand the evolution of wheat. Proc Natl Acad Sci USA, 1974, 71: 4086–4090

[5] Jones B L, Lookhart G L, Mak A, Cooper D B. Sequences of purothionins and their inheritance in diploid, tetreploid, and hexapliod wheats. J Hered, 1982, 73: 143–144

[6] Fernandez C R, Hernandez-Lucas C, Carbonero P, Garcia-Olmedo F. Gene expression in allopolyloids: Genetic control of lipopurothionins in wheat. Genetics, 1976, 83: 687–699

[7] Kerby K. A cytological and biochemical characterization of the potential B genome donors to common wheat, Triticum aestivum. PhD Dissertation of University Alberta, Edmonton, 1986

[8] Dvorak J, McGuire P E, Cassidy B. Apparent sources of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome, 1988, 30: 680–689

[9] Konarev V G, Gavrilyuk I P, Gubareva N K, Peneva T I. About nature and origin of wheat genomes on the biochemistry and immunochemistry of grains. Cereal Chem, 1979, 56: 272–278

[10] Nishikawa K. Species relationships of wheat and its putative ancestors as viewed from isozyme variation. In: Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan, 1983. pp 59–63

[11] Dvorak J, Terlizzi P, Zheng H B, Resta P. The evolution of polyploid wheats: Identification of the A genome donor species. Genome, 1993, 36: 21–30

[12] Xu N-Y(徐乃瑜). Classification, origin and evolution of wheat. J Wuhan Bot Res (武汉植物学研究), 1988, 6(2): 187–194 (in Chinese)

[13] Sarkar P, Stebbins G L. Morphological evidence concerning the origin of the B genome in wheat. Am J Bot, 1956, 43: 297–304

[14] Aniol A. A serological investigation of wheat evolution. Z Pflanzenzuecht, 1974, 73: 194–203

[15] Riley R, Unrau J, and Chapman V. Evidence on the origin of the B genome of wheat. J Heredity, 1958, 49: 91–98

[16] Feldman M. New evidence on the origin of the B genome of wheat. In: Proceedings of the 5th International Wheat Genetic Symposium, New Delhi, India, 1978. pp 120–132

[17] Konarev V G. The nature and origin of wheat genomes on the data of grain protein immunochemistry and electrophoresis. In: Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan, 1983. pp 65–75

[18] Gerlach W L, Appels R, Dennis E S, Peacock W J. Evolution and analyses of wheat genomes using highly repeated DNA sequences. In: Proceedings of the 5th International Wheat Genetic Symposium, New Delhi, India, 1978. pp 81–91

[19] Kerby K, Kuspira J. The phylogeny of polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). Genome, 1987, 29: 722–737

[20] Chen Q-F(陈庆富). Inquisition about the origin and evolution of wheat genomes. Guihaia (广西植物), 1997, 17(3): 276–282 (in Chinese with English abstract).

[21] Zhang W-J(张文驹), Qu L-J(瞿礼嘉), Gao W(高巍), Gu H-Y(顾红雅), Chen J-K(陈家宽), Chen Z-L(陈章良). ITS1 and ITS2 sequences of four possible donors to bread wheat genome and their phylogenetic relationships. Acta Bot Sin (植物学报), 1998, 40(11): 994–1000 (in Chinese with English abstract)

[22] Zhang W-J(张文驹), Qu L-J(瞿礼嘉), Gao W(高巍), Gu H-Y(顾红雅), Chen J-K(陈家宽), Chen Z-L(陈章良). The phylogenetic relationships among the possible donors of B genome of common wheat based on internal transcribed spacer (ITS) sequences. Acta Phytotaxonomica Sin (植物分类学报), 1999, 37(5): 417–424(in Chinese with English abstract)

[23] Sun Y(孙毅), Liang A(梁爱华), Wang J(王景雪), Skinner D. A phylogeny study of Medicago species based on ribosomal DNA ITS sequences. Acta Bot Boreal-Occident Sin (西北植物学报), 2003, 23(2): 242–246

[24] Li D Y, Ru Y Y, Zhang X Y. Chromosomal distribution of the 18S-5.8S-26S rDNA loci and heterogeneity of nuclear ITS regions in Thinopyrum intermedium. Acta Bot Sin, 2004, 46: 1234–1241

[25] Wang J-B(王建波), Zhang W-J(张文驹). Concerted evolution of nuclear rDNA in allopolyploid plants. Hereditas (遗传), 2000, 22(1): 54–56 (in Chinese with English abstract)

[26] Mc Garrey P, Kaper J M. A simple and rapid method for screening transgenic plant using PCR. Bio/Techniques, 1991, 11: 428–432

[27] Sun Y, Skinner D Z, Liang G H, Hulbert S H. Phylogengtic analysis of sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet, 1994, 89: 26–32

[28] Baldwin G B, Sanderson M J, Porter J M, Wojciechowski M F, Campbell C S, Donoghue M J. The ITS region of nuclear ribosoma DNA: A valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard, 1995, 82: 247–277

[29] Waters E R, Schaal B A. Biased gene conversion is not occurring among rDNA repeats in the Brassica triangle. Genome, 1996, 39: 150–154

[30] Sang T, Crawford D J, Stuessy T F. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA, 1995, 92: 6813–6817

[31] Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA, 1995, 92: 280–284

[32] Liu A-H(刘爱华), Wang J-B(王建波). Sequence elimination and the genomic evolution of allopolyploid plants. J Wuhan Bot Res (武汉植物学研究), 2004, 22(2): 158–162 (in Chinese with English abstract)

[33] Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13: 1735–1747

[34] Feldman M, Liu B, Segal G, Abbo S, Levy A A, Vega J M. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1318–1387

[35] Liu B, Vega M J, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops (II): Changes in low-copy coding DNA sequences. Genome, 1998, 41: 535–542

[36] Rudnóy S, Bratek Z, Páldi E, Rácz I, Lásztity D. Studies on chloroplast and nuclear rDNA in hexaploid bread wheat and its relatives. Acta Biol Szegediensis, 2005, 49: 35–36
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!