欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1013-1020.doi: 10.3724/SP.J.1006.2009.01013

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

首批海岛棉基因组来源的微卫星标记的分离、评价和定位

张培培,王夏青**,余杨,余渝,林忠旭*,张献龙   

  1. 华中农业大学植物科学技术学院/作物遗传改良国家重点实验室与国家植物基因研究中心(武汉),湖北武汉430070
  • 收稿日期:2008-09-16 修回日期:2009-02-15 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 林忠旭,E-mail:linzhongxu@mail.hzau.edu.cn;Tel:027-87283955;Fax:027-87280016
  • 基金资助:

    本研究由国家自然科学基金项目(30871559和30600396)资助。

Isolation,Characterization and Mapping of Genomic Microsatellite Markers for the First Time in Sea-Island Cotton(Gossypium barbadense)

ZHANG Pei-Pei,WANG Xia-Qing**,YU Yang,YU Yu,LIN Zhong-Xu*,ZHANG Xian-Long   

  1. Department of Plant Science & Technology,National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research(Wuhan),Huazhong Agricultural University,Wuhan 430070,China
  • Received:2008-09-16 Revised:2009-02-15 Published:2009-06-12 Published online:2009-04-16
  • Contact: LIU Zhong-Xu,E-mail:linzhongxu@mail.hzau.edu.cn;Tel:027-87283955;Fax:027-87280016

摘要:

海岛棉(Gossypium barbadense)是世界上最重要的栽培棉种之一。海岛棉纤维品质优良,是优质棉的重要产源。为了研究海岛棉的遗传多样性,为海岛棉育种提供参考依据,从海岛棉遗传标准系中分离基因组来源的微卫星标记用于海岛棉遗传评价。采用两种方法分离微卫星标记,一是用ISSR (inter simple sequence repeat) 引物扩增Pima3-79,克隆测序后从中开发微卫星标记;二是利用简并引物扩增Pima3-79,克隆测序后从中开发微卫星标记。共挑选1 447个克隆,筛选出239个独立克隆。测序后得到214个单一序列,其中包含微卫星并可用于引物设计的序列70个,获得86对引物。86对引物用于扩增56个海岛棉材料和4个陆地棉材料,16对引物没有扩增,43对引物在所有材料中没有多态性;27对引物在海岛棉和陆地棉之间有多态性,19对引物在海岛棉中表现多态性。利用Jaccard相似系数和UPGMA方法进行聚类分析可以明显区分陆地棉和海岛棉,并且将海岛棉分为4类。14对引物在BC1群体中表现多态性,产生14个位点。9个位点整合到BC1连锁图的7个染色体上,4个位于A亚基因组,5个位于D亚基因组。海岛棉微卫星标记扩展了棉花微卫星标记,有助于海岛棉遗传多样性的研究,有利于棉花遗传图谱的进一步丰富。

关键词: 海岛棉, 微卫星标记, 遗传变异, 遗传定位

Abstract:

Sea-island cotton (G. barbadense) is one of the most important cultivated cotton species in the world. In order to explore the genetic diversity of this species, microsatellite loci were identified from G. barbadense cv. Pima3-79 (the genetic standard line). Microsatellite markers were developed using two different approaches: (i) cloning of ISSR amplified fragments and (ii) amplification using degenerate primers. Two hundred and thirty-nine unique clones were generated from 1447 recombinants, and 214 unique sequences were obtained. Eighty-six primer pairs were developed from 70 sequences that had flanking regions sufficient for primer design. The 86 SSR primer pairs were used to analyze 56 sea-island cotton accessions and 4 upland cotton cultivars, 16 primers had no amplification and 43 primers did not detect polymorphism between all the cultivars. Nineteen primers showed polymorphism between the sea-island cotton accessions. On the basis of Jaccard’s genetic similarity coefficient, these primers could distinctly distinguish sea-island cotton and upland cotton, and sea-island cotton accessions were separated into four groups. Nine interspecific polymorphic markers were mapped on the cotton genetic map with four mapped at A sub-genome and five at D sub-genome. These microsatellite markers will be useful for assessing the genetic diversity patterns within sea-island cotton as well as aiding in construction of genetic linkage maps.

Key words: Sea-island cotton, Microsatellites, Genetic variation, Genetic mapping


[1] Bolek Y, El-Zik K M, Pepper A E, Bell A A, Magill C W, Thaxton P M, Reddy O U K. Mapping of Verticillium wilt resistance genes in cotton. Plant Sci, 2005, 168, 1581-1590

[2] Stephens S G. The genetics of ‘‘Corky’’. The New World alleles and their possible role as an interspecific isolating mechanism. J Genet, 1946, 47, 150-161

[3] Chen G(陈光), Du X-M(杜雄明), Lu D-B(卢东柏), Zhou Z-L(周忠丽), Liu G-Q(刘国强). Genetic diversity of Sea Island cotton using SSR markers. J Plant Genet Resour (植物遗传资源学报), 2005, 6(2), 135-139(in Chinese with English abstract)

[4] Li W(李武), Ni W(倪薇), Lin Z-X(林忠旭), Zhang X-L(张献龙). Genetic diversity analysis of sea-island cotton cultivars using SRAP markers. Acta Agron Sin (作物学报), 2008, 34(5): 893-898(in Chinese with English abstract)

[5] Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet, 2004, 108: 280-291

[6] Rong J, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X, Garza J J, Marler B S, Park C, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X, Zhu L, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417

[7] Lacape J M, Nguyen T B, Thibivilliers S, Bojinov B, Courtois B, Cantrell R G, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003, 46:612-626

[8] Lacape J M, Nguyen T B, Courtois B, Belot J L, Giband M, Gourlot J P, Gawryziak G and Roques S. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci, 2005, 45: 123-140

[9] Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart J McD. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed, 2005, 124: 180-187

[10] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica, 2007, 153: 181-197

[11] Yu J, Yu S, Lu C, Wang W, Fan S, Song M, Lin Z, Zhang X, Zhang J. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integ Plant Biol, 2007, 49: 716-724

[12] Zhang Y X, Lin Z X, Li W, Tu L L, Nie Y C, Zhang X L. Studies of new EST-SSRs derived from Gossypium barbadense. Chin Sci Bull, 2007, 52: 2522-2531

[13] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP and PCR analysis. Plant Mol Biol Rep, 1993, 11, 112-127

[14] Zhang Y X, Lin Z X, Xia Q Z, Zhang M J, Zhang X L. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome, 2008, 51: 534-546

[15] Fisher P J, Gardner R C, Richardson T E. Single locus microsatellites isolated using 5′ anchored PCR. Nucl Acid Res, 1996, 24: 4369-4371

[16] Kumar S V, Tan S G, Quah S C, Yusoff K. Isolation and characterization of seven tetranucleotide microsatellite loci in mungbean, Vigna radiata. Mol Ecol Notes, 2002, 2: 293-295

[17] Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res, 1999, 9: 868-877

[18] Rozen S, Skaletsky H J. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, eds. Bioinformatics Methods and Protocols: Methods in Molecular Biology, Totowa, New Jersey: Humana Press, 2000, pp 365-386

[19] Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. New York: Exeter Software, 2000

[20] Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg I. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181

[21] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175

[22] Reddy O U K, Pepper A E, Abudurakhmonov I, Saha S, Jenkins J N, Brooks T D, Bolek Y, El-Zik K M. New dinucleotide and trinucleotide microsatellite resources for cotton genome research. J Cot Sci, 2001, 5: 103-113

[23] Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167-175

[24] Qureshi S N, Saha S, Kantety R V, Jenkins J N. EST-SSR: A new class of genetic markers in cotton. J Cot Sci, 2004, 8: 112-123

[25] Han Z G, Wang C B, Song X L, Guo W Z, Gou J Y, Li C H, Chen X Y, Zhang T Z. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet, 2006, 112: 430-439

[26] Taliercio E, Allen R D, Essenberg M, Klueva N, Nguyen H, Patil M A, Payton P, Millena A C M, Phillips A L, Pierce M L, Scheffler B, Turley R, Wang J, Zhang D S, Scheffler J. Analysis of ESTs from multiple Gossypium hirsutum tissues and identification of SSRs. Genome, 2006, 49: 306-319

[27] Hoffman S M, Yu J Z, Grum D S, Xiao J, Kohel R J, Pepper A E. Identification of 700 new microsatellite loci from cotton (G. hirsutum L.). J Cotton Sci, 2007, 11:208-241

[28] Han Z G, Guo W Z, Song X L, Zhang T Z. Genetic mapping of EST derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genomics, 2004, 272: 308-327

[29] Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred (RIL) cotton population. Mol Gen Genomics, 2005, 274: 428-441

[30] Wang C B, Guo W Z, Cai C P, Zhang T Z.Characterization, development and exploitation of EST-derived microsatellites in Gossypium raimondii Ulbrich. Chin Sci Bull, 2006, 51: 557-561

[31] Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Assessment of genotype variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica, 2001, 119: 39-43
[1] 曹新川,胡守林,韩秀锋,何良荣,郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系[J]. 作物学报, 2020, 46(02): 300-306.
[2] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[3] 李乐晨,朱国忠,苏秀娟,郭旺珍. 适于海岛棉指纹图谱构建的SNP核心位点筛选与评价[J]. 作物学报, 2019, 45(5): 647-655.
[4] 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110.
[5] 李超,李志坤,谷淇深,杨君,柯会锋,吴立强,王国宁,张艳,吴金华,张桂寅,阎媛媛,马峙英,王省芬. 海岛棉CSSLs分子评价及纤维品质、产量性状QTL定位[J]. 作物学报, 2018, 44(8): 1114-1126.
[6] 简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(05): 657-671.
[7] 黄启秀,曲延英,姚正培,李梦雨,陈全家*. 海岛棉枯萎病抗性与类黄酮代谢相关基因表达量的相关[J]. 作物学报, 2017, 43(12): 1791-1801.
[8] 李国君,马艺文,徐丹阳,吴永波,宋洁,王楠,郝转芳,赵娟. 玉米SNAC基因的遗传变异及耐旱性调控[J]. 作物学报, 2017, 43(08): 1128-1138.
[9] 张力佳,张艳,荣伟,杨君,张桂寅,吴立强,李志坤,吴金华,马峙英,王省芬. 一个受黄萎病菌诱导的海岛棉功能基因GbVWR的克隆与表达[J]. 作物学报, 2016, 42(12): 1779-1786.
[10] 王鹏,张天真. 利用棉花海陆种间染色体片段导入系剖析光合色素含量的遗传基础[J]. 作物学报, 2012, 38(06): 947-953.
[11] 韩建东,李伟华,曹远银,宫志远,姚强. 小麦抗秆锈病基因Sr33的微卫星标记[J]. 作物学报, 2012, 38(06): 1003-1008.
[12] 张媛媛, 束爱萍, 张立娜, 曹桂兰, 韩龙植. 中国不同省份籼稻地方品种的遗传结构分析[J]. 作物学报, 2011, 37(12): 2173-2178.
[13] 邵菁, 戴伟民, 张连举, 宋小玲, 强胜. 江苏省杂草稻遗传多样性及其起源分析[J]. 作物学报, 2011, 37(08): 1324-1332.
[14] 王变银, 翟军, 郝元峰, 李安飞, 孔令让. 对人工合成小麦的微卫星变异分析[J]. 作物学报, 2011, 37(08): 1491-1496.
[15] 张强, 姚国新, 胡广隆, 汤波, 陈超, 李自超. 利用极端材料定位水稻粒形性状数量基因位点[J]. 作物学报, 2011, 37(05): 784-792.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!