欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2167-2173.doi: 10.3724/SP.J.1006.2009.02167

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应

李俊1,魏会廷2,杨粟洁3,李朝苏1,汤永禄1,胡晓蓉1,杨武云1,*   

  1. 1四川省农业科学院作物研究所,四川成都610066;2四川省农业科学院植物保护研究所,四川成都610066;3成都石室中学,四川成都610000
  • 收稿日期:2009-02-23 修回日期:2009-07-09 出版日期:2009-12-10 网络出版日期:2009-09-07
  • 通讯作者: 杨武云, Tel: 02884504657; E-mail: yangwuyun@yahoo.com.cn
  • 基金资助:

    本研究由国家自然科学基金(30771338,30871532),国家高技术研究发展计划(863计划)项目(2006AA20Z1C6),国家支持计划项目(2006BAD13B02-03,2006BAD01A02),国家小麦产业技术体系项目,四川省育种攻关项目,四川省应用研究项目,四川省财政育种青年资助。

Genetic Effects of 1BS Chromosome Arm on the Main Agrionomic Traits in Chuanmai 42

LI Jun1,WEI Hui-Ting2,YANG Su-Jie3,LI Chao-Su1,TANG Yong-Lu1,HU Xiao-Rong1,ANG Wu-Yun1*   

  1. 1Crop Research Institute,Sichuan Academy of Agricultural Sciences,Chengdu 610066,China;2Institute of Plant Protection,Sichuan Academy of Agricultural Sciences,Chengdu610066,China;3Chengdu Shishi High School,Chengdu 610000,China
  • Received:2009-02-23 Revised:2009-07-09 Published:2009-12-10 Published online:2009-09-07
  • Contact: YANG Wu-Yun, Tel: 02884504657; E-mail: yangwuyun@yahoo.com.cn

摘要:

川麦421BS染色体臂来源于人工合成小麦亲本Syn769。利用川麦42与含1BL/1RS易位系的四川小麦品种川农16构建的127个重组自交系(RIL, F8),经34个环境的遗传评价,比较了川麦421BS和川农161RS染色体臂对小麦产量构成因子和产量的遗传效应。结果表明,RIL群体中川麦421BS染色体臂株系和川农161RS染色体臂株系在分蘖力、成穗率、全生育期、小穗数、收获指数和籽粒产量6个性状上存在显著差异; 1BS染色体臂有利于提高成穗率和收获指数,而1RS染色体臂有利于提高分蘖能力和增加小穗数,1BS株系的籽粒平均产量比1RS株系增加2.91%。鉴于1RS染色体臂上的抗条锈病基因丧失抗性,其携带的黑麦碱基因对加工品质有明显的负向作用,而川麦421BS染色体臂携带高抗条锈病基因YrCH42, 并对小麦籽粒产量有正向作用,因此建议在小麦遗传改良中利用川麦421BS替换1RS染色体臂。

关键词: 1BS, 1RS, 人工合成小麦, 川麦42, 遗传效应

Abstract:

Chuanmai 42 (Syn769/Sw3243//Chuan6415) is a non-1BL/1RS wheat (Triticum aestivum L.) cultivar with high-yield potential and good resistance to strip rust (Puccinia striiformis f. sp. tritici), which has been developed from an elite synthetic hexaploid wheat Syn769 (Decoy 1/Aegilops tauschii 188, 1BS/1BL). The 1BS chromosome arm of Chuanmai 42 is originated from Syn769 and carries a stripe rust resistance gene YrCH42. In purpose of understanding the genetic effects of 1BS and 1RS chromosome arm on yield-related traits in wheat, 127 recombinant inbred lines (RILs, F8) derived from Chuanmai 42 and Chuannong 16 (1BL/1RS translocation cultivar) were evaluated in three years across four environments in Sichuan province from 2005 to 2008. A total of 16 traits of the two parents (Chuanmai 42 and Chuannong 16) and the RIL population, such as spike number, grain number per spike, thousand-grain weight, and grain yield, were investigated. 1BS chromosome arm lines derived from Chuanmai 42 and 1RS chromosome arm lines derived from Chuannong 16 were significantly different on six traits. The 1BS chromosome arm positively increased the ratio of spikes to summit population and harvest index, whereas the 1RS chromosome arm only had positive effect on tiller number per plant and spikelet number per spike. The average grain yield of RILs with 1BS chromosome arm was 2.91% higher than that of RILs with 1RS chromosome arm. Because the 1RS chromosome arm with Sec-1 gene significantly degrades the processing quality of wheat and the rust resistance genes are invalidated to rust races in China, it is suggested to replace the 1RS with the 1BS chromosome arm of Chuanmai 42.

Key words: 1BS, 1RS, Synthetic hexaploid wheat, Chuanmai 42, Genetic effection

[1] Singh N K, Shepherd K W, McIntosh R A. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalinson the short arm of rye chromosome 1R. Theor Appl Genet, 1990, 80: 609-616

[2] Villareal R L, Mujeeb-Kazi A, Rajaram S, Del Toro E. Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Breed Sci, 1994, 44: 7-11

[3] Wieser H, Kieffer R , Lelley T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agric, 2000, 80: 1640-1647

[4] Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Gao Y-C(高永超), Jing Z-B(井赵斌), Yu G-J(于广军). Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin (作物学报), 2004, 30(6): 531-535 (in Chinese with English abstract)

[5]Wei Y-M(魏育明), Zheng Y-L(郑有良), Zhou R-H(周荣华), Zhou Y-H(周永红), Yan Z-H(颜泽洪), Jia J-Z(贾继增), Zhang Z-Q(张志清). Comparison of molecular methods for identifying the presence of 1BL/1RS translocation chromosomes in wheat. J Sichuan Agric Univ (四川农业大学学报), 2001, 19(1): 10-13 (in Chinese with English abstract)

[6] Villareal R L, Rajaram S, Mujeeb-Kazi A, Del Toro E. The effect of chromosome 1BL/1RS translocation on the yield potential of certain spring wheat (Triticum aestivum L.). Plant Breed, 1991, 106: 77-81

[7] Moreno-Sevilla B, Baenziger P S, Petersonetal C J. Agronomic performance and end-use quality of 1B vs. 1BL/1RS genotype derived from winter wheat ‘Rawhide’. Crop Sci, 1995, 35: 1607-1612

[8] Moreno-Sevilla B, Baenziger P S, Peterson C J, Graybosch R A, McVey D V. The 1BL/1RS translocation: Agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci, 1995, 35: 1051-1055

[9] XiaoY-G(肖永贵), Yan J(阎俊), He Z-H(何中虎), Zhang Y(张勇), Zhang X-K(张晓科), Liu L(刘丽), Li T-F(李天富), Qu Y-Y(曲延英), Xia X-C(夏先春). Effect of 1BL/1RS translocation on yield traits and powdery mildew resistance in common wheat and QTL analysis. Acta Agron Sin (作物学报), 2006, 32(11): 1636-1641 (in Chinese with English abstract)

[10] Mckendry A L, Tague D N, Miskin K E. Effect of 1BL·1RS on agronomic performance of soft red winter wheat. Crop Sci, 1996, 36: 844-847

[11] Lelley T, Eder C, Grausgruber H. Influence of 1BL·1RS wheat-rye chromosome translocation on genotype by environment interaction. J Cereal Sci, 2004, 39: 313-320

[12] Zarco-Hemander J A, Santiveri F, Michelena A, Pena R J. Durum wheat (Triticum turgidum L.) carrying the 1BL/1RS chromosomal translocation: agronomic performance and quality characteristics under Mediterranean conditions. Eur J Agron, 2005, 22: 33-43

[13] Rajaram S, Mann C E, Oriz-Ferrara G, Mujeeb-Kazi A. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Proceedings of the Sixth International Wheat General Symposium, Kyoto, Japan, 1983. pp 613-621

[14] Lukaszewski A J. Frequency of 1RS·1AL and 1RS·1BL Translocations in United States wheats. Crop Sci, 1990, 30: 1151-1153

[15] Villareal R L, Banuelos O, Mujeeb Kazi A, Rajaram S. Agronomic performance of chromosome 1B and T1BL·1RS near-isolines in the spring bread wheat Seri M82. Euphytica, 1998, 103: 195-202

[16] Wang L F, Ma J X, Zhou R H, Wang X M, Jia J Z. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I. 178383 (Triticum aestivum L.). Euphytica, 2002, 124: 71-73

[17] Peng J H, Fahima T, Röder M S, Li Y C, Gramaa A, Nevoe E. Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region of chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol, 2000, 146: 141-154

[18] Peng J H, Fahima T, Röder M S, Huang Q Y, Dahan A, Li Y C, Gramaa A, Nevoe E. High-density molecular map of chromosome region harbouring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica, 2000, 109: 199-210

[19] Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440

[20]Zhang Y(张颙), Li W(李伟), Yang W-Y(杨武云), Zheng Y-L(郑有良). Biochemical character analysis of new wheat cultivar Chuanmai 42. Southwest China J Agric Sci (西南农业学报),2004, 17(5): 600-603 (in Chinese with English abstract)

[21] Li W(李伟), Zheng Y-L(郑有良), Wei Y-M(魏育明), Yan Z-H(颜泽洪), Lan X-J(兰秀锦). Biochenical marker character analysis of new wheat cultivar Chuannong 16. Southwest China J Agric Sci (西南农业学报), 2003, 16(2): 7-10 (in Chinese with English abstract)

[22] Fransis H A, Koebner R M D, Leitch A R. Conversion of a RAPD-generated PCR product, containing a novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theor Appl Genet, 1995, 90: 636-642

[23] Sawhney R N, Sharma J B. Novel complementary genes for adult plant leaf rust resistance in a wheat stock carrying the 1BL·1RS translocation. Plant Breed, 1999, 118: 269-271

[24] Wan A-M(万安民), Niu Y-C(牛永春), Wu L-R(吴立人), Yuan W-H(袁文焕), Li G-B(李高宝), Jia Q-Z(贾秋珍), Jin S-L(金社林), Yang J-X(杨家秀), Li Y-F(李艳芳), Bi Y-Q(毕云青). Physiologic specialization of stripe rust of wheat in China during 1991-1996. Acta Phytopathol Sin (植物病理学报), 1999, 29(1): 60-66 (in Chinese with English abstract)

[25] Wu L-R(吴立人), Niu Y-C(牛永春). Strategies of sustainable control of wheat stripe rust in China. Sci Agric Sin (中国农业科学), 2000, 33(5): 1-7 (in Chinese with English abstract)

[26] Singh R P, Hodson D P, Jin Y, Huerta-Espino J, Kinyua M G, Wanyera R, Njau P. Current status, likelymigration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. Nutr Nat Resour, 2006, 54: 1-13

[27] CIMMYT. Sounding the Alarm on Global Stem Rust, Mexico, DF: CIMMYT. 2005
[2007-05-22]. http://www.globalrust.org/documents/SoundingAlarmGlobal Rust.pdf

[28] He Z-H(何中虎), Xia X-C(夏先春), Chen W-Q(陈万权). Breeding for resistance to new race Ug99 of stem rust pathogen. J Triticeae Crops (麦类作物学报), 2008, 28(1): 170-173 (in Chinese with English abstract)

[29] Duan X-Y(段霞瑜), Sheng B-Q(盛宝钦), Zhou Y-L(周益林), Xiang Q-J(向齐君). Monitoring of the virulence population of Erysiphe graminis f. sp. tritici. Acta Phytophylacica Sin (植物保护学报), 1998, 25(1): 31-35 (in Chinese with English abstract)

[30] Lutz J, Limpert E, Bartos P, Zeller F J. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I: Czechoslovakian cultivars. Plant Breed, 1992, 108: 33-39

[31] Martin D J, Stewart B G. Dough stickiness in rye-derived wheat cultivars. Euphytica, 1990, 51: 77-86

[32] Graybosch R A. Quality effects of rye chromatin transfers to wheat. J Cereal Sci, 2001, 33: 3-16

[33] Barbeau W E, Griffey C A, Uriyo M G, Harris C H, Johnson J M. Baking performance of 1BL/1RS soft red winter wheats. J Food Quality, 2001, 24: 127-139

[34] Khelifi D , Branlard G. The effect of HMW and LMW subunits of glutenin and of gliadins on the technological quality of progeny from four crosses between poor breadmaking quality and strong wheat cultivars. Cereal Sci, 1992, 16: 195-209

[35] Gupta R B, Shepherd K W. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin: I. genetic control of the subunits in species related to wheat. Theor Appl Genet, 1990, 80: 183-187

[36] Liu J-J (刘建军), He Z-H(何中虎), Pena R J, Zhao Z-D (赵振东). The effects of 1B/1R translocation on grain quality and noodle quality of bread wheat. Acta Agron Sin (作物学报), 2004, 30(2):149-153 (in Chinese with English abstract)

[37] Liu L(刘丽), Yan J(阎俊), Zhang Y(张艳), He Z-H(何中虎), Pena R J, Zhang L-P(张立平). Allelic variation at the Glu-1 and Glu-3 loci and presence of 1B/1R translocation, and their effects on processing quality in cultivars and advanced lines from autumn-sown wheat regions in China. Sci Agric Sin (中国农业科学), 2005, 38(10): 1944-1950 (in Chinese with English abstract)
[38] Wieser H, Kieffer R, Lelley T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. J Sci Food Agric, 2000, 80: 1640-1647
[1] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[2] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
[3] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[4] 汪文祥,胡琼,梅德圣,李云昌,周日金,王会,成洪涛,付丽,刘佳*. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应[J]. 作物学报, 2016, 42(08): 1103-1111.
[5] 寇春兰,赵来宾,刘梦,郝明,甯顺腙,袁中伟,刘登才,张连全*. 小麦未减数配子基因的连锁标记及染色体区段检测[J]. 作物学报, 2016, 42(07): 984-989.
[6] 李朝苏,吴晓丽,汤永禄,杨武云,吴元奇,吴春,马孝玲,李式昭. 四川近十年小麦主栽品种的品质状况[J]. 作物学报, 2016, 42(06): 803-812.
[7] 李韬*,郑飞,秦胜男,李磊,顾世梁. 小麦–黑麦易位系T1BL•1RS在小麦品种中的分布及其与小麦赤霉病抗性的关联[J]. 作物学报, 2016, 42(03): 320-329.
[8] 赵德辉,阎俊,黄玉莲,夏先春,张艳,田宇兵,何中虎,张勇. 1BL/1RS易位对小麦贮藏蛋白组分含量和面团流变学特性的影响[J]. 作物学报, 2015, 41(11): 1648-1656.
[9] 杨莉,黄玉莲,常萍,阎俊,张业伦,夏先春,田宇兵,何中虎,张勇. 小麦阿拉伯木聚糖含量的QTL分析及其与品质性状的关系[J]. 作物学报, 2014, 40(09): 1695-1701.
[10] 逯晓萍,刘丹丹,王树彦,米福贵,韩平安,吕二锁. 高丹草遗传效应与杂种表现预测模型[J]. 作物学报, 2014, 40(03): 466-475.
[11] 崔嘉成,刘佳,梅德圣,李云昌,付丽,彭鹏飞,王军,胡琼. 甘蓝型油菜裂角相关性状的遗传与相关分析[J]. 作物学报, 2013, 39(10): 1791-1798.
[12] 王坚,赵开军,乔枫,杨生龙. OsGA20ox2不同长度RNAi片段对水稻株高等农艺性状的遗传效应[J]. 作物学报, 2012, 38(04): 632-638.
[13] 汤继华, 季洪强, 刘义宝, 张君, 谭晓军, 胡彦民, 刘宗华. 玉米籽粒赖氨酸含量的遗传及其与产量的关系分析[J]. 作物学报, 2011, 37(09): 1585-1591.
[14] 郝俊杰, 刘焕民, 马奇祥, 崔小伟, 于霁雯, 贾新合, 高俊山. 棉花叶片早衰的诊断及遗传效应分析[J]. 作物学报, 2011, 37(03): 389-396.
[15] 余利, 何方, 陈桂玲, 崔法, 亓晓蕾, 王洪刚, 李兴锋. 利用1RS特异标记和染色体原位杂交技术鉴定小麦1BL·1RS易位系[J]. 作物学报, 2011, 37(03): 563-569.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!