欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (08): 1248-1257.doi: 10.3724/SP.J.1006.2010.01248

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

双列杂交设计的主-微位点组遗传分析方法研究

贺建波,管荣展*,盖钧镒*   

  1. 南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2010-01-15 修回日期:2010-04-17 出版日期:2010-08-12 网络出版日期:2010-06-11
  • 通讯作者: 管荣展;盖钧镒,Tel.025-84395405;E-mail:sri@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101708,2009CB118404,2010CB125906),国家高技术研究发展计划(863计划)项目(2006AA100104),国家科技支撑计划项目(2006BAD13B05-7),国家自然科学基金项目(30490250,32671266),教育部高等学校创新引智计划项目(B08025),农业部公益性行业专项(200803060)资助。

A Genetic Analysis Method of Major-Minor Locus Groups in diallel Cross Design

 HE Jian-Bo, GUAN Rong-Zhan*, GAI Jun-Yi*   

  1. Soybean Research Institute,Nanjing Agricultural University/National Center for Soybean Improvement/National Key Laboratory for Crop Genetics and Germplasm Enhancement,Nanjing 210095,China
  • Received:2010-01-15 Revised:2010-04-17 Published:2010-08-12 Published online:2010-06-11
  • Contact: GUAN Rong-Zhan;GAI Jun-Yi,Tel. 025-84395405;E-mail:sri@njau.edu.cn

摘要: 数量性状遗传研究通常以双亲本杂交后代为对象,而作物育种中常涉及多个具有优良性状的亲本作为有利基因的供体,因此有必要研究多个材料间的遗传关系,以便从中选择最佳亲本组合,这对杂种品种选育尤其重要。本研究在以往位点组分析方法的基础上,将其扩展为主基因+多基因遗传模型框架下双列杂交设计的主-微位点组遗传分析方法,将微位点组从原来的剩余部分中分离出来。该方法针对双列杂交设计的主位点组和微位点组及其与环境互作的统计遗传模型提出了主位点组检测与效应估计和微位点组效应估计的逐步选入回归法;因模拟实验发现逐步选入回归法的F测验有偏,提出了F测验的调整方法。利用模拟方法评估了遗传率、主位点组个数、增效基因型频率、主位点组间相似性和微基因效应等因素与方法功效的关系。然后通过模拟实验数据和油菜实际试验数据的分析验证了所提方法的应用效果。本研究建立的双列杂交设计的主-微位点组遗传分析方法为杂种品种的亲本选配提供了方法和理论依据。

关键词: 双列杂交遗传设计, 主基因加微基因遗传模型, 竹为点组, 微位点组, 逐步回归

Abstract: Studies on inheritance of quantitative traits are usually based on two-way crosses, while in plant breeding, knowledge on inheritance of traits among a group of parental materials is needed since elite genes or QTLs are scattered in different materials. It is especially true in breeding for hybrids. Based on our previous studies on major locus group analysis among a set of parents, we aimed at extending the analysis to major-minor locus groups in diallel cross experiment. The statistical method was derived from a forward stepwise regression for identifying major locus groups and estimating their genetic effects as well as the estimation of genetic effect of collective minor locus groups. In which the procedure of adjusting F criterion was raised since biased F-test was found in a simulation study. Then the procedure was used to evaluate the relationship between its power and some factors, including heritability value, number of major locus groups, genotypic frequency with increment alleles, similarity among major locus groups and effect of collective minor locus groups. A simulated diallel cross experiment was used to demonstrate the effectiveness of the procedure. A diallel cross experiment on days to flowering of rapeseed was given to show the statistical steps and its utilization. The procedure of major-minor locus group analysis in diallel crosses based on major gene plus polygene inheritance model provides a way to analyze the genetic constitution of a group of parental materials for obtaining the best hybrid combinations.

Key words: Diallel cross design, Major gene and polygene model, Major locus group, Minor locus group, Stepwise regression

[1]Gai J Y. Segregation analysis on genetic system of quantitative traits in plants
[J].Front Biol China
[2]Sprague G F, Tatum L A. General vs. specific combining ability in single cross of corn. J Am Soc Agron, 1942, 37: 923-932
[3]Griffing B A. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Bio Sci, 1956, 9: 463-493
[4]Zhu J(朱军). General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ (浙江农业大学学报), 1994, 20(6): 551-559 (in Chinese with English abstract)
[5]Dudley J W. Evaluation of maize populations as sources of favorable alleles
[J].Crop Sci
[6]Guan R-Z(管荣展). Applications of Diallel Cross Design to the Improvement of Heterosis of Elite Crosses and the Distinction Loci Groups among Parents. PhD Dissertation of Nanjing Agricultural University, 1997 (in Chinese)
[7]Gai J-Y(盖钧镒), Guan R-Z(管荣展), Wang J-K(王建康). Methods of genetic experiments for the detection of QTL system in plants
[J].World Sci-Tech R&D (世界科技研究与发展.1999, 21(1):34-40
[8]Guan R-Z(管荣展), Gai J-Y(盖钧镒). Detection of differential QTLs among a group of parents under additive-dominance model by use of diallel design. J Biomath (生物数学学报), 2001, 16(5): 545-552 (in Chinese with English abstract)
[9]David H A.
[J].Nagaraja H N. Order Statistics (3rd edn). John Wiley & Sons Inc.2003,:-
[10]Kutner M H, Nachtsheim C J, Neter J. Applied linear regression models (4th). The McGraw-Hill Companies Inc, 2004. pp 408-410
[11]Ferreira M E, Satagopan J, Yandel B S, Williams P H, Osborn T C. Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet, 1995, 90: 727-732
[12]Verhoeven K J F, Jannink J L, McIntyre L M. Using mating designs to uncover QTL and the genetic architecture of complex traits
[J].Heredity
[1] 杨加银,贺建波,管荣展,杨守萍,盖钧镒. 大豆杂种产量的主-微位点组遗传分析[J]. 作物学报, 2010, 36(09): 1468-1475.
[2] 王颖;杜荣蓦;赵素然. 高粱在盐胁迫下特定蛋白的表达及与耐盐性关系的研究[J]. 作物学报, 1999, 25(01): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!