欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1468-1475.doi: 10.3724/SP.J.1006.2010.01468

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆杂种产量的主-微位点组遗传分析

杨加银1,2,贺建波1,**,管荣展1,杨守萍1,盖钧镒1,*   

  1. 1 南京农业大学大豆研究所 / 国家大豆改良中心 / 作物遗传与种质创新国家重点实验室,南京 210095;2 江苏徐淮地区淮阴农业科学研究所 / 江苏省环洪泽湖生态农业生物技术重点实验室,江苏淮安 223001
  • 收稿日期:2010-02-03 修回日期:2010-04-20 出版日期:2010-09-12 网络出版日期:2010-07-05
  • 通讯作者: 盖钧镒, E-mail: sri@njau.edu.cn; Tel: 025-84395405
  • 基金资助:
    本研究由国家重点基础研究发展规划(973计划)项目(2006CB1017, 2009CB1184, 2010CB1259), 国家高技术研究发展计划(863计划)项目(2006AA1001, 2009AA1011), 国家自然科学基金项目(30671266), 国家科技支撑计划项目(2006BAD13B05-7)和高等学校学科创新引智计划项目(B08025)资助。

Genetic Analysis in Terms of Major-Minor Locus Group Constitutions of Yield in Hybrid Soybean

YANG Jia-Yin1,2,HE Jian-Bo1,GUAN Rong-Zhan1,YANG Shou-Ping1,GAI Jun-Yi1,*   

  1. 1 Soybean Research Institute of Nanjing Agricultural University / National Center for Soybean Improvement / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China; 2 Huaiyin Institute of Agricultural Sciences of Xuhuai Region / Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaian 223001, China
  • Received:2010-02-03 Revised:2010-04-20 Published:2010-09-12 Published online:2010-07-05
  • Contact: GAI Jun-Yi,E-mail:sri@njau.edu.cn; Tel: 025-84395405

摘要: 选用来源于中国黄淮和美国的熟期组II~IV的8个大豆品种,按Griffing方法II设计,配成36个双列杂交组合(28个杂种组合+8个亲本)于2003—2005年进行田间试验。应用基于数量性状主基因+多基因遗传模型的主-微位点组分析法,解析8个大豆亲本产量的主、微位点组遗传构成及其效应,估计主、微位点组对产量杂种优势的贡献。结果表明,8个大豆亲本间产量由6个主位点组加微位点组控制,主位点组、微位点组分别解释表型变异的75.98%和10.81%。6个主位点组加性效应(aJ)分别为140.10、259.65、1.95、151.35、–32.70和45.00 kg hm–2,显性效应(dJ)分别为177.15、314.25、105.75、75.90、242.85和171.00 kg hm–2。杂种遗传构成包括主位点组杂合显性效应、主位点组纯合加性效应、微位点组杂合显性效应和微位点组纯合加性效应4部分,相对重要性依次递减,以显性效应为主,加性效应为辅。亲本间主、微位点组及其遗传效应的解析阐释了各杂种组合的遗传特点,还提供了进一步挖掘遗传潜力进行优势改良的基础。

关键词: 大豆, 产量, 杂种优势, 主-微位点组, 加性效应, 显性效应

Abstract: The analysis of major-minor locus groups of diallel crosses based on major gene plus polygene mixed inheritance model provides a way to explore the genetic structure of hybrids among a group of materials. Eight soybean parental materials, seven from Huang-Huai region in China and one from the US with maturity group II–IV were used to develop a set of 36 diallel crosses (including 28 F1 crosses and eight parents) according to the Griffing II pattern. The materials were tested in 2003-2005. From the analysis of major-minor locus groups of the 36 materials, the results showed that six major locus groups plus minor locus groups were detected to explain 75.98% and 10.81% of the phenotypic yield variation, respectively. Which indicated that major locus groups were the major source of genetic variation among the materials with their additive effects (aJ) of 140.10, 259.65, 1.95, 151.35, –32.70, and 45.00 kg ha–1 and dominance effects (dJ) of 177.15, 314.25, 105.75, 75.90, 242.85, and 171.00 kg ha1, respectively, while the minor locus groups were a supplement source in the genetic system. The genetic constitutions of the hybrids were composed of heterozygous dominance effects of major locus groups, homozygous additive effects of major locus groups, heterozygous dominance effects of minor locus groups and homozygous additive effects of minor locus groups, with their relative importance in a descending order. The dissection of the relative importance of the genetic effects of major-minor locus groups helps to explain the genetic characteristics of the hybrids among the parents and provides the genetic basis for further mining the genetic potential of parental materials in the improvement of hybrids.

Key words: Soybean, Yield, Heterosis, Major-minor locus groups, Additive effects, Dominance effects

[1] Leffel R C, Weiss M G. Analysis of diallel crosses among ten varieties of soybean
[J].Agron J.1958, 50:528-534  
[2] Brim C A, Cockerham C C. Inheritance of quantitative characters in soybeans
[J].Crop Sci.1961, 1:187-190 
[3] Ma Y-H(马育华), Gai J-Y(盖钧镒), Hu Y-Z(胡蕴珠). Studies on genetic variation of successive generations after hybridization in soybeans: II. Combining ability and related genetic parameters. Acta Agron Sin (作物学报), 1983, 9(4): 249-258 (in Chinese with English abstract)   
[4] Gai J-Y(盖钧镒), Ma Y-H(马育华), Hu Y-Z(胡蕴珠). Heterosis and combining ability performed in F1 and F3 hybrids between soybean cultivars from the PRC and US. Soybean Sci (大豆科学), 1984, 3(3): 183-191 (in Chinese with English abstract) 
[5] Johnson H W, Robison H F, Comstock R E. Estimates of genetic and environmental variability in soybean
[J].Agron J.1955, 47:314-318  
[6] Pathan M S, Sleper D A. Advances in Soybean Breeding. In: Stacey G ed. Genet Genom Soybean, 2008. pp 117-122 
[7] Zhou R(周蓉), Chen H-F(陈海峰), Wang X-Z(王贤智), Zhang X-J(张晓娟), Shan Z-H(单志慧), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安), Wu J-S(吴江生). QTL analysis of yield, yield components and lodging in soybean
[J].Acta Agron Sin (作物学报.2009, 35(5):821-830  
[8] Gai J Y. Segregation analysis on genetic system of quantitative traits in plants
[J].Front Biol China.2006, 1:85-92   
[9] Guan R-Z(管荣展), Gai J-Y(盖钧镒). Detection of differential QTLs among a group of parents under additive-dominance model by use of diallel design. J Biomath (生物数学学报), 2001, 16(5): 545-552 (in Chinese with English abstract)  
[10] Gai J-Y(盖钧镒), Guan R-Z(管荣展), Wang J-K(王建康). Methods of genetic experiments for the detection of QTL system in plants
[J].World Sci-Tech R&D (世界科技研究与发展.1999, 21(1):34-40  
[11] Qi C-K(戚存扣), Gai J-Y(盖钧镒). Analysis of genotype difference and gene effects of flowering time of rapeseed (Brassica napus L.) from various ecological origins. Acta Agron Sin (作物学报), 2002, 28(4): 455-460 (in Chinese with English abstract) 
[12] Yang Q-L(杨庆利), Wang J-F(王建飞), Ding J-J(丁俊杰), Zhang H-S(张红生). Inheritance of salt tolerance in some rice (Oryza sativa L.) cultivars at the seedling stage. J Nanjing Agric Univ (南京农业大学学报), 2004, 27(4): 6-10 (in Chinese with English abstract)  
[13] He J-B(贺建波), Guan R-Z(管荣展), Gai J-Y(盖钧镒). A study on method of genetic analysis in terms of major-minor locus groups in diallel cross design. Acta Agron Sin (作物学报), 2010, 36(8): 1248-1257  
[14] Yang J-Y(杨加银), Gai J-Y(盖钧镒). Heterosis, combining abi- lity and their genetic basis of yield among key parental materials of soybean in Huang-Huai Valleys
[J].Acta Agron Sin (作物学报.2009, 35(4):620-630  
[15] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651  
[16] Yuan J, Njiti V N, Meksem K, Iqbal M J, Triwitayakorn K, Kassem M A, Davis G T, Schmidt M E, Lightfoot D A. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance
[J].Crop Sci.2002, 42:271-277  
[17] Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population
[J].Euphytica.2003, 129:387-393  
[18] Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations
[J].Theor Appl Genet.2004, 108:458-467  
[19] Li D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles
[J].Crop Sci.2008, 48:571-581
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[14] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[15] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!