Soybean,PI471938,Wilting resistance,Root traits,Genetic analysis,SSR markers,QTL,"/> 对大豆耐萎蔫材料PO471938根系和地上部的性状鉴定、QTL定位
欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1476-1483.doi: 10.3724/SP.J.1006.2010.01476

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

对大豆耐萎蔫材料PO471938根系和地上部的性状鉴定、QTL定位

吕彩霞1,郭建秋1,2,**,王英1,冷建田1,杨光明1,侯文胜1,吴存祥1,*,韩天富1*   

  1. 1 中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程,北京 100081;2 洛阳市农业科学研究院,河南洛阳 471022
  • 收稿日期:2010-03-11 修回日期:2010-04-23 出版日期:2010-09-12 网络出版日期:2010-07-05
  • 通讯作者: 韩天富, 吴存祥, E-mail: hantf@mail.caas.net.cn, wucx@mail.caas.net.cn; Tel: 010-82108784
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118400),农业部财政部现代农业产业技术体系建设专项(nycytx-004)和高技术研究发展计划(863计划)(2006AA100104-9)资助。

Identification, Inheritance and QTL Mapping of Root and Shoot Traits in Soybean Variety PI471938 with Tolerance to Wilting

LV Cai-Xia1,Guo-Jian-Qiu12**,WANG Ying1,LENG Jian-Tian1,YANG Guang-Ming1,HOU Wen-Sheng1,WU Cun-Xiang1*,HAN Tian-Fu1*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Luoyang Academy of Agricultural Sciences, Luoyang 471022, China
  • Received:2010-03-11 Revised:2010-04-23 Published:2010-09-12 Published online:2010-07-05
  • Contact: HAN Tian-Fu,WU Cun-Xiang,E-mail:hantf@mail.caas.net.cn,wucx@mail.caas.net.cn;Tel:010-82108784

摘要: PI471938是从美国引进的大豆耐萎蔫抗旱种质资源。为更好了解和利用该材料,分别在灌水和干旱胁迫条件下比较PI471938与普通大豆品种Dare、丰收黄根系及地上部性状的差异,并配制杂交组合,构建分离群体,利用主基因-多基因混合遗传模型分析杂交后代根系性状的遗传规律。结果表明,在正常灌水和干旱处理条件下,PI471938的根干重、根体积、主根长均显著高于Dare和丰收黄(P<0.01),说明根系发达是PI471938耐萎蔫的重要原因。供试亲本和各世代材料的株高、地上部干重均与根干重及根体积显著正相关,可作为对根系性状进行间接选择的指标。在Dare×PI471938杂交组合的F2代,不论在灌水还是干旱条件下,根干重均以微效多基因控制为主,主基因遗传率较低;根体积在灌水条件下表现多基因遗传,而在干旱条件下则由2对加性-显性-上位性主基因+加性-显性多基因控制,主基因遗传率为54.63%。在干旱条件下,丰收黄 × PI471938组合的根干重、根体积均以多基因控制为主。以在干旱条件下种植的Dare×PI471938组合的F2代群体为材料,采用SSR标记对大豆根系及地上部性状进行QTL定位,检测到位于3个不同连锁群的5个主效QTL,表型贡献率在16.07%~38.44%之间。

关键词: 大豆, PI471938, 耐萎蔫, 根系性状, 遗传分析, SSR标记, QTL

Abstract: PI471938, introduced from the US, is a soybean [Glycine max (L.) Merr.] variety with tolerance to wilting. In order to know and use this germplasm, the shoot and root traits of PI471938 and two other varieties (Dare and Fengshouhuang) were investigated under either routine irrigation or drought stress conditions in this study. The crosses were made and segregating populations were analyzed for the inheritance of root and shoot traits by using the major gene and polygene mixed inheritance models. The results showed that the dry root weight, root volume and tap root length of PI471938 were significantly higher than those of Dare and Fengshouhuang under both routine irrigation and drought stress conditions, indicating that large root system especially the deep rooting is one of the major reasons for PI471938 to be tolerant to wilting. Both plant height and shoot dry weight of the parents and progenies were positively correlated with root dry weight and volume, which made it possible to use these shoot traits to indirectly select the root traits. In the F2 population of the cross Dare×PI416937, root dry weight was found to be mainly controlled by minor-effect polygenes under both routine irrigation and drought stress conditions. The root volume was controlled by polygenes under routine irrigation but by two pairs of additive-dominance-epistasis major genes plus additive-dominance polygenes under drought stress, and the heritability of major genes was as high as 54.63%. Under drought stress, the root dry weight and root volume in the segregating populations of the cross Fengshouhuang×PI471938 were mainly controlled by polygenes. By using the F2 population derived from Dare × PI471938 grown under drought condition, SSR mapping was conducted and five major-effect QTLs conferring the plant height, root dry weight, shoot/root ratio and tap root length were located on three linkage groups, which could explain 16.07%–38.44% of the total phenotypic variation.

Key words: Soybean')">

Soybean, PI471938, Wilting resistance, Root traits, Genetic analysis, SSR markers, QTL

[1] Liu X-Y(刘学义). Drought. In: Lam H-M(林汉明), Chang R-Z(常汝镇), Shao G-H(邵桂花), Liu Z-T(刘忠堂), eds. Soybean Stress Tolerance Research in China (中国大豆耐逆研究). Beijing: China Agriculture Press, 2009. pp 1-60 (in Chinese)
[2] Zhang S-G(张士功), Liu G-D(刘国栋), Liu G-L(刘更另). Plant nutrition and drought resistance of crops. Chin Bull Bot (植物学通报), 2001, 18(1): 64-69 (in Chinese with English abstract)
[3] Shan L(山仑), Chen G-L(陈国良). Theory and Practice of Dry Land Agriculture in the Loess Plateau (黄土高原旱地农业的理论与实践). Beijing: Science Press, 1993. pp 125-129 (in Chinese)
[4] Hudak C M, Patterson R P. Vegetative growth analysis of a drought-resistant soybean plant introduction
[J].Crop Sci.1995, 35:464-471
[5] Hudak C M, Patterson R P. Root distribution and soil moisture depletion pattern of a drought-resistant soybean plant introduction
[J].Agron J.1996, 88:478-485
[6] Pantalone V R, Rebetzke G J, Burton J W, Carter T E Jr. Phenotypic evaluation of root traits in soybean and applicability to plant breeding
[J].Crop Sci.1996, 36:456-459
[7] Carter T E Jr, De Souza P I, Purcell L C. Recent advances in breeding for drought and aluminum resistance in soybean. In: Kauffman H ed. Proceedings of World Soybean Research Conference VI, Chicago, IL, USA, 1999. pp 106-125
[8] Fletcher A L, Sinclair T R, Allen L H Jr. Transpiration responses to vapor pressure deficit in well watered “slow-wilting” and commercial soybean
[J].Environ Exp Bot.2007, 61:145-151
[9] Hufstetler E V, Boerma H R, Carter T E Jr, Earl H J. Genotypic variation for three physiological traits affecting drought tolerance in soybean
[J].Crop Sci.2007, 47:25-35
[10] King C A, Purcell L C, Brye K R. Differential wilting among soybean genotypes in response to water deficit
[J].Crop Sci.2009, 49:290-291
[11] Sinclair T R, Zwieniecki M A, Holbrook N M. Low leaf hydraulic conductance associated with drought tolerance in soybean
[J].Physiol Plant.2008, 132:446-451
[12] Carter T E Jr, Rufty T W. Soybean plant introductions exhibiting drought and aluminum tolerance. In: Kuo G ed. Adaptation of Vegetable and Other Food Crops to Temperature and Water Stress. Asian Vegetable Research and Development Center, Shanhua, Taiwan, China, 1993. pp 335-346
[13] Sloane R J, Patterson R P, Carter T E Jr. Field drought tolerance of a soybean plant introduction
[J].Crop Sci.1990, 30:118-123
[14] Pantalone V R, Buton J W, Carter T E Jr. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits
[J].Crop Sci.1996, 36:1120-1125
[15] Fehr W R, Caviness C E. Stages of Soybean Development. Agric and Home Economics Exp. 1977, Stn. Spec. Rep. 80, Iowa State Univ, Ames, IA, USA, pp 1-11
[16] Lü S-L(吕世霖), Cheng S-H(程舜华). The ecological distribution of seed characteristics of soybean and in relation to breeding. Soybean Sci (大豆科学), 1984, 3(3): 201-207 (in Chinese with English abstract)
[17] Xue Q-W(薛青武), Chen P-Y(陈培元). Effect of different types of drought stress on water relations and photosynthesis in wheat. Acta Agric Boreali-Sin (华北农学报), 1990, 5(2): 26-32 (in Chinese with English abstract)
[18] Wang J-K(王建康), Gai J-Y(盖钧镒). Identification of major gene and polygene mixed inheritance model of quantitative traits by using joint analysis of P1, F1, P2, F2 and F2:3 generations. Acta Agron Sin (作物学报), 1998, 24(6): 651-659 (in Chinese with English abstract)
[19] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 169-219 (in Chinese)
[20] Lincoin S E, Daly M J, Lander E S. Constructing genetics linkage maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. Cambridge: Lander E S, 1993. pp 1-9
[21] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 User Manual. Department of Statistics, North Carolina State University, Raleigh, NC, USA, 2005. http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm
[22] Kabelka E A, Diers B W, Fehr W F, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions
[J].Crop Sci.2004, 44:784-791
[23] Pantalone V R, Buton J W, Carter T E Jr. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits
[J].Crop Sci.1996, 36:1120-1125
[24] Wang H-L(王宏林), Yu D-Y(喻德跃), Wang Y-J(王永军), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Mapping QTLs of soybean root weight with RIL population NJRIKY. Hereditas (遗传), 2004, 26 (3): 333-336 (in Chinese with English abstract)
[25] Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能), Wang Y-J(王永军), Chen S-Y(陈受宜). Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean
[Glycine max (L.) Merr.]. Act Genet Sin (遗传学报), 2005, 32(8): 855-863 (in Chinese with English abstract)
[26] Yang S-P(杨守萍), Chen J-M(陈加敏), He X-H(何小红), Yu D-Y(喻德跃), Gai J-Y(盖钧镒). Inheritance of drought tolerance and root traits of seedling in soybean. Soybean Sci (大豆科学), 2005, 24(4): 275-280 (in Chinese with English abstract)
[27] Du W, Yu D, Fu S. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population
[J].J Integr Plant Biol.2009, 51:868-878
[28] Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T. Physiological and molecular approaches to improve drought resistance in soybean
[J].Plant Cell Physiol.2009, 50:1260-1276
[29] Guan J-F(关军锋), Li G-M(李广敏). The root function expression and regulation under drought stress. China Basic Sci (中国基础科学), 2001, (3): 25-28 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!