Soybean,PI471938,Wilting resistance,Root traits,Genetic analysis,SSR markers,QTL,"/>
作物学报 ›› 2010, Vol. 36 ›› Issue (09): 1476-1483.doi: 10.3724/SP.J.1006.2010.01476
吕彩霞1,郭建秋1,2,**,王英1,冷建田1,杨光明1,侯文胜1,吴存祥1,*,韩天富1*
LV Cai-Xia1,Guo-Jian-Qiu12**,WANG Ying1,LENG Jian-Tian1,YANG Guang-Ming1,HOU Wen-Sheng1,WU Cun-Xiang1*,HAN Tian-Fu1*
摘要: PI471938是从美国引进的大豆耐萎蔫抗旱种质资源。为更好了解和利用该材料,分别在灌水和干旱胁迫条件下比较PI471938与普通大豆品种Dare、丰收黄根系及地上部性状的差异,并配制杂交组合,构建分离群体,利用主基因-多基因混合遗传模型分析杂交后代根系性状的遗传规律。结果表明,在正常灌水和干旱处理条件下,PI471938的根干重、根体积、主根长均显著高于Dare和丰收黄(P<0.01),说明根系发达是PI471938耐萎蔫的重要原因。供试亲本和各世代材料的株高、地上部干重均与根干重及根体积显著正相关,可作为对根系性状进行间接选择的指标。在Dare×PI471938杂交组合的F2代,不论在灌水还是干旱条件下,根干重均以微效多基因控制为主,主基因遗传率较低;根体积在灌水条件下表现多基因遗传,而在干旱条件下则由2对加性-显性-上位性主基因+加性-显性多基因控制,主基因遗传率为54.63%。在干旱条件下,丰收黄 × PI471938组合的根干重、根体积均以多基因控制为主。以在干旱条件下种植的Dare×PI471938组合的F2代群体为材料,采用SSR标记对大豆根系及地上部性状进行QTL定位,检测到位于3个不同连锁群的5个主效QTL,表型贡献率在16.07%~38.44%之间。
[1] Liu X-Y(刘学义). Drought. In: Lam H-M(林汉明), Chang R-Z(常汝镇), Shao G-H(邵桂花), Liu Z-T(刘忠堂), eds. Soybean Stress Tolerance Research in China (中国大豆耐逆研究). Beijing: China Agriculture Press, 2009. pp 1-60 (in Chinese) [2] Zhang S-G(张士功), Liu G-D(刘国栋), Liu G-L(刘更另). Plant nutrition and drought resistance of crops. Chin Bull Bot (植物学通报), 2001, 18(1): 64-69 (in Chinese with English abstract) [3] Shan L(山仑), Chen G-L(陈国良). Theory and Practice of Dry Land Agriculture in the Loess Plateau (黄土高原旱地农业的理论与实践). Beijing: Science Press, 1993. pp 125-129 (in Chinese) [4] Hudak C M, Patterson R P. Vegetative growth analysis of a drought-resistant soybean plant introduction [J].Crop Sci.1995, 35:464-471 [5] Hudak C M, Patterson R P. Root distribution and soil moisture depletion pattern of a drought-resistant soybean plant introduction [J].Agron J.1996, 88:478-485 [6] Pantalone V R, Rebetzke G J, Burton J W, Carter T E Jr. Phenotypic evaluation of root traits in soybean and applicability to plant breeding [J].Crop Sci.1996, 36:456-459 [7] Carter T E Jr, De Souza P I, Purcell L C. Recent advances in breeding for drought and aluminum resistance in soybean. In: Kauffman H ed. Proceedings of World Soybean Research Conference VI, Chicago, IL, USA, 1999. pp 106-125 [8] Fletcher A L, Sinclair T R, Allen L H Jr. Transpiration responses to vapor pressure deficit in well watered “slow-wilting” and commercial soybean [J].Environ Exp Bot.2007, 61:145-151 [9] Hufstetler E V, Boerma H R, Carter T E Jr, Earl H J. Genotypic variation for three physiological traits affecting drought tolerance in soybean [J].Crop Sci.2007, 47:25-35 [10] King C A, Purcell L C, Brye K R. Differential wilting among soybean genotypes in response to water deficit [J].Crop Sci.2009, 49:290-291 [11] Sinclair T R, Zwieniecki M A, Holbrook N M. Low leaf hydraulic conductance associated with drought tolerance in soybean [J].Physiol Plant.2008, 132:446-451 [12] Carter T E Jr, Rufty T W. Soybean plant introductions exhibiting drought and aluminum tolerance. In: Kuo G ed. Adaptation of Vegetable and Other Food Crops to Temperature and Water Stress. Asian Vegetable Research and Development Center, Shanhua, Taiwan, China, 1993. pp 335-346 [13] Sloane R J, Patterson R P, Carter T E Jr. Field drought tolerance of a soybean plant introduction [J].Crop Sci.1990, 30:118-123 [14] Pantalone V R, Buton J W, Carter T E Jr. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits [J].Crop Sci.1996, 36:1120-1125 [15] Fehr W R, Caviness C E. Stages of Soybean Development. Agric and Home Economics Exp. 1977, Stn. Spec. Rep. 80, Iowa State Univ, Ames, IA, USA, pp 1-11 [16] Lü S-L(吕世霖), Cheng S-H(程舜华). The ecological distribution of seed characteristics of soybean and in relation to breeding. Soybean Sci (大豆科学), 1984, 3(3): 201-207 (in Chinese with English abstract) [17] Xue Q-W(薛青武), Chen P-Y(陈培元). Effect of different types of drought stress on water relations and photosynthesis in wheat. Acta Agric Boreali-Sin (华北农学报), 1990, 5(2): 26-32 (in Chinese with English abstract) [18] Wang J-K(王建康), Gai J-Y(盖钧镒). Identification of major gene and polygene mixed inheritance model of quantitative traits by using joint analysis of P1, F1, P2, F2 and F2:3 generations. Acta Agron Sin (作物学报), 1998, 24(6): 651-659 (in Chinese with English abstract) [19] Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 169-219 (in Chinese) [20] Lincoin S E, Daly M J, Lander E S. Constructing genetics linkage maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. Cambridge: Lander E S, 1993. pp 1-9 [21] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5 User Manual. Department of Statistics, North Carolina State University, Raleigh, NC, USA, 2005. http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm [22] Kabelka E A, Diers B W, Fehr W F, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions [J].Crop Sci.2004, 44:784-791 [23] Pantalone V R, Buton J W, Carter T E Jr. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits [J].Crop Sci.1996, 36:1120-1125 [24] Wang H-L(王宏林), Yu D-Y(喻德跃), Wang Y-J(王永军), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Mapping QTLs of soybean root weight with RIL population NJRIKY. Hereditas (遗传), 2004, 26 (3): 333-336 (in Chinese with English abstract) [25] Liu Y(刘莹), Gai J-Y(盖钧镒), Lü H-N(吕慧能), Wang Y-J(王永军), Chen S-Y(陈受宜). Identification of drought tolerant germplasm and inheritance and QTL mapping of related root traits in soybean [Glycine max (L.) Merr.]. Act Genet Sin (遗传学报), 2005, 32(8): 855-863 (in Chinese with English abstract) [26] Yang S-P(杨守萍), Chen J-M(陈加敏), He X-H(何小红), Yu D-Y(喻德跃), Gai J-Y(盖钧镒). Inheritance of drought tolerance and root traits of seedling in soybean. Soybean Sci (大豆科学), 2005, 24(4): 275-280 (in Chinese with English abstract) [27] Du W, Yu D, Fu S. Detection of quantitative trait loci for yield and drought tolerance traits in soybean using a recombinant inbred line population [J].J Integr Plant Biol.2009, 51:868-878 [28] Manavalan L P, Guttikonda S K, Tran L S P, Nguyen H T. Physiological and molecular approaches to improve drought resistance in soybean [J].Plant Cell Physiol.2009, 50:1260-1276 [29] Guan J-F(关军锋), Li G-M(李广敏). The root function expression and regulation under drought stress. China Basic Sci (中国基础科学), 2001, (3): 25-28 (in Chinese with English abstract) |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[4] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[5] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[6] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[7] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[8] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[11] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[12] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[13] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[14] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[15] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
|