欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1569-1576.doi: 10.3724/SP.J.1006.2011.01569

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦抗白粉病基因pm42的EST连锁图谱构建和比较基因组学分析

刘子记,朱婕,华为,杨作民,孙其信,刘志勇*   

  1. 中国农业大学植物遗传育种系 / 北京市作物遗传改良重点实验室 / 教育部作物杂种优势研究与利用重点实验室,北京100193
  • 收稿日期:2011-03-02 修回日期:2011-04-27 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 刘志勇, E-mail: zhiyongliu@cau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30425039, 30771341, 30971780, 31030056), 国家高技术研究发展计划(863计划)项目, 高等学校学科创新引智基地项目(111-2-03), 教育部长江学者与创新团队发展计划和中国农业大学研究生创新专项资助。

Comparative Genomics Analysis and Constructing EST Markers Linkage Map of Powdery Mildew Resistance Gene pm42 in Wheat

LIU Zi-Ji,ZHU Jie,HUA Wei,YANG Zuo-Min,SUN Qi-Xin,LIU Zhi-Yong*   

  1. Department of Plant Genetics & Breeding, China Agricultural University / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, the Ministry of Education, Beijing 100193, China
  • Received:2011-03-02 Revised:2011-04-27 Published:2011-09-12 Published online:2011-06-28
  • Contact: 刘志勇, E-mail: zhiyongliu@cau.edu.cn

摘要: 目的基因精细遗传连锁图谱的构建是图位克隆的基础,小麦功能基因精细遗传连锁图谱的构建依赖于比较基因组学分析。水稻和短柄草(Brachypodium distachyon)基因组序列是小麦比较基因组学分析和功能基因精细遗传定位的重要工具。本研究利用小麦、短柄草和水稻的基因组共线性关系对小麦抗白粉病基因pm42进行比较基因组学分析,明确了pm42基因所在2BS基因组区域与短柄草第1染色体和水稻第3染色体直系同源基因组区域的对应关系,开发出与抗白粉病基因pm42连锁的EST-SSCP (expressed sequence tag-single strand conformation polymorphism)标记CD452782BF201235,EST-STS (expressed sequence tag-sequence tagged site)标记CJ674042EB513371CV771633,构建了pm42基因EST标记遗传连锁图谱,CJ674042BF201235CD452782CV771633位于pm42近端粒侧,距离pm42的遗传距离分别为1.9、12.0、19.7和25.7 cM;EB513371位于pm42近着丝粒侧,与pm42的遗传距离为14.6 cM。整合原有的作图数据,构建了pm42基因的高密度比较基因组学遗传连锁图谱,pm42被定位于3.3 cM的区间,该区间对应于短柄草66 kb的基因组区域及水稻69 kb的基因组区域。该结果为抗白粉病基因pm42高密度精细遗传连锁图谱构建、分子辅助选择和基因聚合奠定了基础。

关键词: 小麦抗白粉病基因, pm42, 比较基因组学, 二穗短柄草, 共线性, EST-STS, EST-SSCP

Abstract: Constructing fine genetic linkage map of target gene provides a starting point for map-based cloning. Fine genetic mapping of functional genes in wheat has benefited greatly from comparative genomics analysis. The genome sequences of rice and Brachypodium distachyon provide powerful tools for comparative genomics analysis and fine genetic mapping of target gene in wheat. In the present study, comparative genomics analysis using wheat-Brachypodium-rice genomic colinearity showed that genomic region containing pm42 in wheat 2BS was orthologous to Brachypodium chromosome 1 and rice chromosome 3. Two EST-SSCP markers, CD452782 and BF201235, three EST-STS markers, CJ674042,EB513371, and CV771633, linked to pm42 were developed and an EST marker-based genetic linkage map of pm42 was constructed. CJ674042, BF201235, CD452782, and CV771633 were distal to pm42 with genetic distances of 1.9, 12.0, 19.7, and 25.7 cM, respectively. EB513371 was proximal to pm42 with a genetic distance of 14.6 cM. An integrated high-density comparative genomics genetic linkage map of pm42 was constructed and the powdery mildew resistance gene was mapped in a 3.3 cM interval orthologous to 66 kb and 69 kb genomic regions in Brachypodium chromosome 1 and rice chromosome 3, respectively, providing useful information for the fine mapping, molecular assisted selection and gene pyramiding of pm42.

Key words: Resistance gene to wheat powdery mildew, pm42, Comparative genomics, Brachypodium distachyon, Colinearity, EST-STS, EST-SSCP

[1]Bennett M D, Leitch I J. Nuclear DNA amounts in angiosperms. Ann Bot, 1995, 76: 113–176
[2]Qi L L, Echalier B, Chao S, Lazo G R, Butler G E, Anderson O D, Akhunov E D, Dvo?ák J, Linkiewicz A M, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis C E, Greene R A, Kantety R, La Rota C M, Munkvold J D, Sorrells S F, Sorrells M E, Dilbirligi M, Sidhu D, Erayman M, Randhawa H S, Sandhu D, Bondareva S N, Gill K S, Mahmoud A A, Ma X F, Miftahudin, Gustafson J P, Conley E J, Nduati V, Gonzalez-Hernandez J L, Anderson J A, Peng J H, Lapitan N L V, Hossain K G, Kalavacharla V, Kianian S F, Pathan M S, Zhang D S, Nguyen H T, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Gill B S. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 2004, 168: 701–712
[3]Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874–879
[4]Lu H J, Fellers J P, Friesen T L, Meinhardt S W, Faris J D. Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theor Appl Genet, 2006, 112: 1132–1142
[5]Bottley A, Xia G M, Koebner R M D. Homoeologous gene silencing in hexaploid wheat. Plant J, 2006, 47: 897–906
[6]Delaunay A, Lacroix C, Morliere S, Riault G, Chain F, Trottet M, Jacquot E. A single-stranded conformational polymorphism (SSCP)-derived quantitative variable to monitor the virulence of a Barley yellow dwarf virus-PAV (BYDV-PAV) isolate during adaptation to the TC14 resistant wheat line. Mol Plant Pathol, 2010, 11: 651–661
[7]Draper J, Mur L A J, Jenkins G, Ghosh-Biswas G C, Bablak P, Hasterok R, Routledge A P M. Brachypodium distachyon: a new model system for functional genomics in grasses. Plant Physiol, 2001, 127: 1539–1555
[8]Bossolini E, Wicker T, Knobel P A, Keller B. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J, 2007, 49: 704–717
[9]Faris J D, Zhang Z, Fellers J P, Gill B S. Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Funct Integr Genomics, 2008, 8: 149–164
[10]Hua W, Liu Z J, Zhu J, Xie C J, Yang T M, Zhou Y L, Duan X Y, Sun Q X, Liu Z Y. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 223–230
[11]Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Technical Report, 3rd edn. Cambridge, Masachussetts, USA: Whitehead Institute, 1992
[12]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317–321 (in Chinese with English abstract)
[13]Wang C-T(王翠亭), Huang Z-J(黄占景), He C-F(何聪芬), Bei C-L(秘彩莉), Shen Y-Z(沈银柱). Detection of the wheat salt-tolerant-mutant using PCR-SSCP combining with direct sequencing. Acta Genet Sin (遗传学报), 2001, 28(9): 852–855 (in Chinese with English abstract)
[14]Ujino-Ihara T, Matsumuto A, Iwata H, Yoshimura K, Tsumura Y. Single-strand conformation polymorphism of sequence-tagged site markers based on partial sequences of cDNA clones in Cryptomeria japonica. Genes Genet Syst, 2002, 77: 251–257
[15]Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L ssp. indica). Science, 2002, 296: 79–92
[16]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263–6268
[17]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640–1644
[18]Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S, Colas I, Moore G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 2006, 439: 749–752
[19]Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298–1301
[20]Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581–19586
[21]Guyot R, Yahiaoui N, Feuillet C, Keller B. In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics, 2004, 4: 47–58
[22]Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528–538
[23]Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA, 2003, 100: 15253–15258
[24]The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463: 763–768
[25]Zhang H T, Guan H Y, Li J T, Zhu J, Xie C J, Zhou Y L, Duan X Y, Yang T, Sun Q X, Liu Z Y. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 1613–1621
[26]Perovic D, Stein N, Zhang H, Drecsher A, Prasad M, Kota R, Kopahnke D, Graner A. An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Func Integr Genomics, 2004, 4: 74–83
[27]Brunner S, Keller B, Feuillet C. A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics, 2003, 164: 673–683
[1] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[2] 吴磊,王丹,苏文悦,郭长虹,束永俊. 利用比较基因组学开发山羊草属InDel分子标记[J]. 作物学报, 2012, 38(07): 1334-1338.
[3] 王益军,吕燕萍,谢秦,邓德祥,卞云龙. 高粱全基因组生长素原初响应基因Aux/IAA的序列特征分析[J]. 作物学报, 2010, 36(4): 688-694.
[4] 曹亚萍,曹爱忠,王秀娥,陈佩度. 基于EST-PCR的簇毛麦染色体特异分子标记筛选及应用[J]. 作物学报, 2009, 35(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!