欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 369-373.doi: 10.3724/SP.J.1006.2012.00369

• 研究简报 • 上一篇    下一篇

普通小麦对仓储害虫玉米象的抗性QTL分析

陈振鸿1,李俊1,2,魏会廷2,刘亚西1,李朝苏2,邓梅1,李净琼1,王际睿1,魏育明1,杨武云2,郑有良1,*   

  1. 1四川农业大学小麦研究所,四川成都 611130;2四川省农业科学院作物研究所,四川成都 610066
  • 收稿日期:2011-06-16 修回日期:2011-10-12 出版日期:2012-02-12 网络出版日期:2011-12-01
  • 通讯作者: 郑有良, E-mail: ylzheng@sicau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100100)资助。

Resistance QTL Mapping Aanalysis for Storage Pest Sitophilus zeamais in Wheat

CHEN Zhen-Hong1,LI Jun1,2,LIU Ya-Xi1,LI Tao-Shu2,DENG Mei1,LI Jing-Qiong1,WANG Ji-Rui1,WEI Yu-Ming1,YANG Wu-Yun2,ZHENG You-Liang1,*   

  1. 1 Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; 2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
  • Received:2011-06-16 Revised:2011-10-12 Published:2012-02-12 Published online:2011-12-01
  • Contact: 郑有良, E-mail: ylzheng@sicau.edu.cn

摘要: 以普通小麦品种川农16与人工合成小麦衍生品种川麦42为亲本构建了含有127个株系的重组自交系(RIL)群体,将2008和2009年收获的种子用玉米象(Sitophilus zeamais)虫卵进行接种,并于2009年11月开始储藏,次年8月和10月进行虫害调查。利用复合区间作图法(CIM)对RIL群体的抗虫性进行QTL定位分析。利用2008年收获群体检测到位于3B、2D和3D染色体的3个QTL,贡献率依次为10.2%、8.5%和8.3%;利用2009年收获群体检测到位于3D和4B的2个QTL,贡献率分别为8.5%和11.3%。位于3D染色体Xbarc6–Xgwm112标记区间内的QTL在年度间重复检测到,贡献率为8.3%~8.5%,抗性位点来自川农16。

关键词: 普通小麦, QTL定位, 玉米象抗性

Abstract: Quantitative trait loci (QTLs) associated with Sitophilus zeamais resistance were identified using a population (127 recombined inbred lines) from wheat cross Chuannong 16×Chuanmai 42. In a stimulated storage environment, adult, larva, and egg of S. zeamais were artificially fed with wheat seeds harvested in 2008 and 2009, respectively. Five QTLs located on chromosomes 3B, 2D, 3D, and 4B were detected with phenotypic contributions of 10.2%, 8.5%, 8.3%, 8.5%, and 11.3%, respectively. The QTLs located between Xbarc6 and Xgwm112 on chromosome 3D were identified in seeds from both growing years, which explained 8.3–8.5% of the phenotypic variance. The positive allele on this locus was from parent Chuannong 16.

Key words: Common wheat, QTL mapping, Resistance to Sitophilus zeamais

[1]Maddrid F J, White N D G, Loschiavo S R. Insert in stored cereals and their association with farming practiced in southern Manitoba. Can Entomol, 1990, 122: 515–523
[2]Jemberei B, Obeng-Ofori D, Hassanali A, Nyamasy G N N. Products derived from the leaves of Ocimum kilimannds charicum (Labiatae) as poat-harvest grain protectants against the infestation of three major stored product insect pests. Bull Entomol Res, 1995, 85: 361–367
[3]Matsumoto I, Asakura T, Ohmori T, Tamura T, Abe K. Cathepsin D-like aspartic proteinase occurring in a maize weevil, Sitophilus zeamais, as a candidate digestive enzyme. Biosci Biotecnol Biochem, 2009, 73: 2338–2340
[4]Gruden K, Kuipers A G J, Guncar G, Slapar N, Strukelj B, Maarten A. Jongsma. Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases. Insect Biochem Mol Biol, 2004, 34: 365–375
[5]Araujo R A, Guedes R N C, Oliveira M G A, Ferreira G H. Enhanced proteolytic and cellulolytic activity in insecticide-resistant strains of the maize weevil, Sitophilus zeamais. J Stored Prod Res, 2008, 44: 354–359
[6]Anselme C, Pérez-Broca V, Vallier A, Vincent-Monegat C, Charif D, Latorre A, Moya A, Heddi A. Identification of the weevil immune genes and their expression in the bacteriome tissue. BMC Biol, 2008, 6: 43–56
[7]García-Lara S, Khairallah M M, Vargas M, Bergvinson D J. Mapping of QTL associated with maize weevil resistance in tropical maize. Crop Sci, 2009, 49: 139–149
[8]García-Lara S, Burt A J, Arnason J T, Bergvinson D J. QTL mapping of tropical maize grain components associated with maize weevil resistance. Crop Sci, 2010, 50: 815–825
[9]Li J(李俊), Wei H-T(魏会廷), Hu X-R(胡晓蓉), Li C-S(李朝苏), Tang Y-L(汤永禄), Liu D-C(刘登才), Yang W-Y(杨武云). Identification of a high-yield introgression locus from synthetic hexaploid wheat in Chuanmai 42. Acta Agron Sin (作物学报), 2011, 37(2): 255–262 (in Chinese with English abstract)
[10]Zheng Y-L(郑有良), Lan X-J(兰秀锦), Wei Y-M(魏育明). Analysis of agronomic traits of new wheat variety Chuannong 16. J Sichuan Agric Univ (四川农业大学学报), 2002, 20(3): 194–197 (in Chinese with English abstract)
[11]Xu Y-P(徐玉平), Peng Z-S(彭正松), Liao J(廖杰), Yang W-Y(杨武云). Study on the seedling leaves grow of recombined inbred lines (RILs) of wheat variety Chuanmai 42 × Chuannong 16. J China West Normal Univ (Nat Sci) (西华师范大学学报•自然科学版), 2009, 30(2): 115–120 (in Chinese with English abstract)
[12]Shen L(沈蕾), Long H(龙海), Yan Z-H(颜泽洪), Wei Y-M(魏育明), Zheng Y-L(郑有良). Molecular cloning of a novel low-molecular-weight glutenin subunit gene from wheat variety “Chuanmai 42”. Hereditas (遗传), 2006, 28(1): 57–64 (in Chinese with English abstract)
[13]Liao J(廖杰), Li J(李俊), Tang Y-L(汤永禄), Yang Y-M(杨玉敏), Zeng Y-C(曾云超), Wei H-T(魏会廷), Peng Z-S(彭正松), Hu X-R(胡晓蓉), Yang W-Y(杨武云). Evaluation of important agronomic traits in recombinant inbred lines of Chuanmai 42 × Chuannong 16. Southwest China J Agric Sci (西南农业学报), 2007, 20(2): 300–304 (in Chinese with English abstract)
[14]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181
[15]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175
[16]Bassam B J, Caetano A G, Gresshoff P M. Fast and sensitive silverstaining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80–83
[17]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468
[18]McCouch S R, Cho Y G, Yano M, Paule E, Blinstrub M, Morishima H, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13
[19]Zhuang J, Lin H, Lu J, Qian R, Hittalmani S, Huang N, Zheng L. Analysis of QTLs environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799–808
[20]Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95: 1971–1974
[21]Ahn S, Anderson J A, Sorrells M E, Tanksley S D. Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet, 1993, 241: 483–490
[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[3] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[4] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[5] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[6] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[7] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[8] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[9] 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677.
[10] 王存虎,刘东,许锐能,杨永庆,廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(01): 9-19.
[11] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[12] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[13] 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828.
[14] 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537.
[15] 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!