欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 368-372.doi: 10.3724/SP.J.1006.2013.00368

• 研究简报 • 上一篇    下一篇

BvGLP1过表达增强了转基因小麦对根腐病的抗性

党良1,2,**,宿振起3,**,叶兴国2,徐惠君2,李钊2,邵艳军1,*,张增艳2,*   

  1. 1河北农业大学生命科学学院, 河北保定 071001; 2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部麦类生物学与遗传育种重点实验室, 北京 100081; 3河北省农林科学院粮油作物研究所, 河北石家庄 050035
  • 收稿日期:2012-07-16 修回日期:2012-10-09 出版日期:2013-02-12 网络出版日期:2012-12-11
  • 通讯作者: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781 **同等贡献(Contributed equally to the work)
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2011ZX08002-001)资助。

Overexpression of BvGLP1 in Transgenic Wheat Enhances Resistance to Common Root Rot

DANG Liang1,2,**,SU Zhen-Qi3,**,YE Xing-Guo2,XU Hui-Jun2,LI Zhao2,SHAO Yan-Jun1,*,ZHANG Zeng-Yan2,*   

  1. 1 College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China; 2 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3 Institute of Grain and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050035, China
  • Received:2012-07-16 Revised:2012-10-09 Published:2013-02-12 Published online:2012-12-11
  • Contact: 张增艳, E-mail: zhangzy@mail.caas.net.cn, Tel: 010-82108781 **同等贡献(Contributed equally to the work)

摘要:

类萌发素蛋白(germin-like protein, GLP)是一类含有cupins结构域的糖蛋白, 在植物基础抗性等方面起着重要作用。本研究人工合成了甜菜GLP基因BvGLP1, 并利用基因重组技术构建了受韧皮部特异表达启动子RSS1P驱动BvGLP1基因单子叶植物表达载体pA20-RSS1P::BvGLP1。通过基因枪介导法将其转入小麦品种扬麦18, 对转基因扬麦18T0T3代植株中BvGLP1进行了PCR、半定量RT-PCR和荧光定量QPCR检测, 并对转基因小麦进行根腐病和纹枯病抗性鉴定。结果表明, BvGLP1已转入转基因小麦扬麦18, 并能在转基因小麦中遗传、转录表达; 5个转BvGLP1基因小麦株系的根腐病抗性比受体品种扬麦18有显著提高, 说明BvGLP1过表达增强了转基因小麦对根腐病的抗性。

关键词: 类萌发素蛋白, BvGLP1, 转基因小麦, 小麦根腐病, 抗性

Abstract:

BvGLP1 is a kind of germin-like protein (GLP) from sugar beet. GLP catalyzes the oxidation of oxalic acid to produce hydrogen peroxide that induces plant defense response to pathogen and results in enhanced-resistance. The open-reading-frame sequenceof BvGLP1 was synthesized and used to construct a BvGLP1 expression vector pA20-RSS1P::BvGLP1. In the vector, the expression of BvGLP1 was controlled by rice sucrose synthase-1 promoter (RSS1P). BvGLP1 was introducedinto wheat variety Yangmai 18 through bombardment. The presence and expression of BvGLP1 in T0 to T3 transgenic wheat plants were characterized by PCR, RT-PCR, and QPCR analyses. The common root rot and sharp eyespot disease tests on BvGLP1 transgenic wheat plants following artificial inoculation with the pathogens revealed that the expression of BvGLP1 in five transgenic wheat lines significantly enhanced resistance to common root rot.

Key words: Germin-like protein, BvGLP1, Transgenic wheat, Wheat common root rot, Resistance

[1]Chen Y-X(陈延熙), Tang W-H(唐文华), Zhang D-H(张敦华), Jian X-Y(简小鹰). A preliminary study on etiology of sharp eye-spot of wheat in China. Acta Phytophyl Sin (植物保护学报), 1986, 13(1): 39–44 (in Chinese with English abstract)

[2]Lu Y(路妍), Zhang Z-Y(张增艳), Ren L-J(任丽娟), Liu B-Y(刘宝业), Liao Y(廖勇), Xu H-J(徐惠君), Du L-P(杜丽璞), Ma H-X(马鸿翔), Ren Z-L(任正隆), Jing J-X(井金学), Xin Z-Y(辛志勇). Molecular analyses on Rs-AFP2 transgenic wheat plants and their resistance to Rhizoctonia cerealis. Acta Agron Sin (作物学报), 2009, 35(4): 640–646 (in Chinese with English abstract)

[3]Kumar J, Schafer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagarajan, S, Kogel K H. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular ap-proaches towards better control. Mol Plant Pathol, 2002, 3: 185–195

[4]Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D. Expression of BvGLP-1 encoding a ger-min-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phyto- pathogenic fungi. Mol Plant-Microbe Interact, 2010, 23: 446–457

[5]Breen J, Bellgard M. Germin-like proteins (GLPs) in cereal ge-nomes: gene clustering and dynamic roles in plant defence. Funct Integr Genom, 2010, 10: 463–476

[6]Lane B G, Dunwell J M, Ray J A, Schmitt M R, Cuming A C. Germin, a protein marker of early plant development, is an ox-alate oxidase. J Biol Chem, 1993, 268: 12239–12242

[7]Olson P D, Varner J E. Hydrogen peroxide and lignifications. Plant J, 1993, 4: 887–892

[8]Wei Y D, Zhang Z G, Andersen C H, Schmelzer E, Gregersen P L, Collinge D B, Smedegaard-Petersen V, Thordal-Christensen H. An epidermis/papilla-specific oxalate oxidase-like protein in the defense response of barley attacked by the powdery mildew fun-gus. Plant Mol Biol, 1998, 36: 101–112

[9]Fry S C. Oxidative scission of plant cell wall polysaccharides by ascorbate induced hydroxyl radicals. Biochem J, 1998, 332: 507–515

[10]Caliskan M, Cuming A C. Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germina-tion. Planta, 1998, 15: 165–171

[11]Caliskan M, Turet M, Cuming A C. Formation of wheat (Triticum aestivum L.) embryogenic callus involves peroxide-generating germin-like oxalate oxidase. Planta, 2004, 219: 132–140

[12]Lane B G. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J, 1994, 8: 294–301

[13]Zhou F, Zhang Z, Gregersen P L, Mikkelsen J D, de Neergaard E, Collinge D B, Thordal-Christensen, H. Molecular characteriza-tion of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol, 1998, 117: 33–41

[14]Chen Z, Silvah H, Klessig D F. Active oxygen species in the in-duction of plant systemic acquired resistance by salicylic acid. Science, 1993, 262: 1883–1886

[15]Dumas B, Freyssinet G, Pallett K E. Tissue-specific expression of germin-like oxalate oxidase during development and fungal in-fection of barley seedlings. Plant Physiol, 1995, 107: 1091–1096

[16]Donaldson P A, Anderson T, Lane B G, Davidson A L, Sim-monds D H. Soybean plants expressing an active oligomeric ox-alate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol Mol Plant Pathol, 2001, 59: 297–307

[17]Dong X, Ji R, Guo X, Foster S J, Chen H, Dong C, Liu Y, Hu Q, Liu S. Expressing a gene encoding wheat oxalate oxidase en-hances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta, 2008, 228: 331–340

[18]Liang H, Maynard C A, Allen R D, Powell W A. Increased Sep-toria musiva resistance in transgenic hybrid poplar leaves ex-pressing a wheat oxalate oxidase gene. Plant Mol Biol, 2001, 45: 619–629

[19]Ramputh A, Arnason J, Cass L, Simmonds J. Reduced herbivory of the European corn borer (Ostrinia nubilalis) on corn trans-formed with germin, a wheat oxalate oxidase gene. Plant Sci, 2002, 162: 431–440

[20]Zimmermann G, Bäumlein H, Mock H P, Himmelbach A, Schweizer P. The multigene family encoding germin-like pro-teins of barley. Regulation and function in basal host resistance. Plant Physiol, 2006, 142: 181–192

[21]Li Z(李钊), Zhuang H-T(庄洪涛), Du L-P(杜丽璞), Zhou M-P(周淼平), Cai S-B(蔡士宾), Xu H-J(徐惠君), Li S-S(李斯深), Zhang Z-Y(张增艳). Utilization of tissue specific expressing promoter RSS1P in TiERF1 transgenic wheat. Acta Agron Sin (作物学报), 2011, 37(10): 1897–1903 (in Chinese with English abstract)

[22]Xu H-J(徐惠君), Pang J-L(庞俊兰), Ye X-G(叶兴国), Du L-P(杜丽璞), Li L-C(李连城), Xin Z-Y(辛志勇), Ma Y-Z(马有志), Chen J-P(陈剑平), Chen J(陈炯), Cheng S-H(程顺和), Wu H-Y(吴宏亚). Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin (作物学报), 2001, 27(6): 684–689 (in Chinese with English abstract)

[23]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408

[24]Dong N, Liu X, Lu Y, Du L P, Xu H J, Liu H X, Xin Z Y, Zhang Z Y. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fun-gal pathogen Bipolaris sorokiniana. Func Integr Genomics, 2010, 10: 215–226

[25]Cai S-B(蔡士宾), Ren L-J(任丽娟), Yan W(颜伟), Wu J-Z(吴纪中), Chen H-G(陈怀谷), Wu X-Y(吴小有), Zhang X-Y(张仙义). Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Sci Agric Sin (中国农业科学), 2006, 39(5): 928–934 (in Chinese with English abstract)

[1] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[2] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[3] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[4] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[6] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[7] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[8] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[9] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[10] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[11] 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29.
[12] 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41.
[13] 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘[J]. 作物学报, 2020, 46(9): 1303-1311.
[14] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[15] 李威涛,徐志军,蔡岩,郭建斌,喻博伦,黄莉,陈玉宁,周小静,罗怀勇,刘念,陈伟刚,任小平,姜慧芳. 抗青枯病兼大果和高出仁率的花生新种质创制[J]. 作物学报, 2020, 46(4): 484-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!