欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (02): 360-367.doi: 10.3724/SP.J.1006.2013.00360

• 研究简报 • 上一篇    下一篇

谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析

赵晋锋1,**,余爱丽1,**,田岗1,杜艳伟1,郭二虎1,*,刁现民2,*   

  1. 1 山西省农科院谷子研究所,山西长治 046011;2 中国农业科学院作物科学研究所, 北京100081
  • 收稿日期:2012-06-18 修回日期:2012-10-09 出版日期:2013-02-12 网络出版日期:2012-12-11
  • 通讯作者: 郭二虎, E-mail: guoerhu2003@yahoo.com.cn; 刁现民, E-mail: xmdiao@yahoo.com.cn
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(20114008)资助。

Identification of CBL Genes from Foxtail Millet (Setaria italica [L.] Beauv. ) and Its Expression under Drought and Salt Stresses

ZHAO Jin-Feng1,**,YU Ai-Li1,**,TIAN Gang1,DU Yan-Wei1,GUO Er-Hu1,*,DIAO Xian-Min2,*   

  1. 1 Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi 046011, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2012-06-18 Revised:2012-10-09 Published:2013-02-12 Published online:2012-12-11
  • Contact: 郭二虎, E-mail: guoerhu2003@yahoo.com.cn; 刁现民, E-mail: xmdiao@yahoo.com.cn

摘要:

CBL/CIPK信号网络系统在植物对逆境应答过程中起重要作用。本文利用生物信息学方法从谷子基因组中鉴定出7个候选CBL基因,命名为SiCBL1~SiCBL7。分析表明谷子CBL基因在蛋白质序列和结构上非常保守,所有预测SiCBL基因都含有7~8个内含子,而且其外显子序列同源性很高并且大部分外显子含有相同的碱基数目。预测SiCBL基因均含有4EF-Hand功能域而且相邻EF-Hand功能域之间的氨基酸数目非常保守。进化和聚类分析结果表明, CBL基因在陆生植物早期的进化过程中就已经存在,所有CBL基因被分为4个亚组。7个候选SiCBL基因中, 4个基因(SiCBL1SiCBL2SiCBL3SiCBL5)受干旱胁迫诱导表达,3(SiCBL1SiCBL3SiCBL7)受高盐胁迫诱导表达。SiCBL3基因在干旱胁迫下被强烈诱导可能意味着其在干旱应答中起重要作用。本文报道的谷子CBL基因丰富和完善了植物CBL成员, 为进一步研究CBL/CIPK网络系统在抗逆作物谷子逆境响应中的功能、机制奠定了基础。

关键词: 谷子, CBL基因, 干旱,

Abstract:

CBL/CIPK signal network system plays an important role in plant stress response. In this study, we identified seven candidate CBL genes designated as SiCBL1–7 from foxtail millet (Setaria italica [L.] Beauv.) genome using bioinformatics methods. The distributions of the predicted foxtail millet CBL genes were uneven in the nine chromosomes. Sequence analysis showed that the protein sequences and structure of foxtail millet CBL genes were very conservative. All the putative CBL genes contained 7–8 introns. Most exons of those SiCBL genes contained the same base number and shared highly similar sequence identity. All foxtail millet CBL genes consisted of four EF-Hand functional domains and the distance between the EF-hand motifs was conservative. Evolutionary analysis revealed that the CBL genes existed in the early evolutionary stage of terrestrial plants and all CBL genes were divided into four subgroups. The expression patterns of those SiCBL genes under drought and salt stresses, were displayed by RT-PCR and the results showed that four SiCBL genes (SiCBL1, SiCBL2, SiCBL3,and SiCBL5) were strongly induced by drought and three SiCBL genes (SiCBL1, SiCBL3,and SiCBL7) were induced by salt stress. SiCBL3 maybe takes an important role in foxtail millet under drought because of its constitutive high level expression. Foxtail millet CBL genes reported in this study would enrich CBL members in plant kingdom and lay a foundation for studying the function and mechanisms of the CBL/CIPK network system response to stresses.

Key words: Foxtail millet, Calcineurin B-Like proteins gene, Drought, Salt

[1]Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperature: towards genetic engineering for stress tolerance. Planta, 2003, 218: 1–14



[2]Zhi H(智慧), Niu Z-G(牛振刚), Jia G-Q(贾冠清), Chai Y(柴杨), Li W(李伟), Wang Y-F(王永芳), Li H-Q(李海权), Lu P(陆平), Bai S-L(白素兰), Diao X-M(刁现民). Variation and correlation analysis of hay forage quality traits of foxtail millet [Setaria italica (L.) Beauv.]. Acta Agron Sin (作物学报), 2012, 38: 800−807 (in Chinese with English abstract)



[3]Devos K M, Wang Z M, Beales J, Sasaki T, Gale M D. Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet, 1998, 96: 63–68



[4]Jayaraman A, Puranik S, Rai N K, Vidapu S, Sahu P P, Lata C, Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol, 2008, 40: 241–251



[5]Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012, 30: 549–554



[6]Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro-Herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M. Reference genome sequence of the model plant setaria. Nat Biotechnol, 2012, 30: 555–561



[7]Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14(suppl): S389–S400



[8]Kudla J, Batistic O. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta, 2004, 219: 915–924



[9]Batisti? O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793: 985–992



[10]Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophy, 2005, 444: 139–158



[11]Liu J P, Ishitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA, 2000, 97: 3730–3734



[12]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273



[13]Martinez A J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M,Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001–1012



[14]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360



[15]Albrecht V, Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003, 36:457–470



[16]Cheong Y H, Kim K N, Pandey G K, Gupta R, Grant J J, Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 2003, 15: 1833–1845



[17]Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004, 16: 1912–1924



[18]Wang M Y, Gu D, Liu T S, Wang Z Q, Guo X Y, HOU W, Bai Y F, Chen X P, Wang G Y. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol, 2007, 65: 733–746



[19]Mahajan S, Sopory S K, Tuteja N. Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J, 2006, 273: 907–925



[20]Zhang H C, Yin W L, Xia X L. Calcineurin B-like family in populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul, 2008, 56: 129–140



[21]Gao P, Zhao P M, Wang J, Wang H Y, Du X M, Wang G L, Xia G X. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Plant Physiol Biochem, 2008, 46: 935–940



[22]Hwang Y H, Bethke P C, Cheong Y H, Chang H S, Zhu T, Jones R L. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol, 2005,138: 1347–1358



[23]Zhao J-F(赵晋锋), Yu A-L(余爱丽), Wang G-H(王高鸿), Tian G(田岗), Wang H-Y(王寒玉), Du Y-W(杜艳伟), Chang H-X(常海霞). Progress of CBL/CIPK signal system in response to stresses in plant. J Agricl Sci Technol (中国农业科技导报), 2011, 13: 32–38 (in Chinese with English abstract)



[24]Shinozaki K, Yamaguchi-Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251–264



[25]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software Version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[26]Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd Edn. New York: Cold Spring Harbor Laboratory Press, 2001. pp 581–585



[27]Diao X-M(刁现民). Adance in Foxtial Millet biotechnology and its future directions. J Hebei Agric Sci (河北农业科学), 2005, 9: 61–68 (in Chinese with English abstract)



[28]Tian B-H(田伯红), Wang S-Y(王素英), Li Y-J(李雅静), Wang J-G(王建广), Zhang L-X(张立新), Liang F-Q(梁凤芹), Zhai Y-Z(翟玉柱), Liu J-R(刘金荣). Response to sodium chloride stress at germination and seedling and identification of salinity tolerant genotypes in foxtail millet landraces originated from China. Acta Agron Sin (作物学报), 2008, 34: 2218−2222 (in Chinese with English abstract)



[29]Guo X-Y(郭喜英). Phylogenetic and Expression Analysis of CBL Gene Family in Plants and Functional Analysis of CBL Genes in Zea mays. MS Disseratation of China Agricultural University Press, 2007. pp 19−20 (in Chinese)



[30]Lewit-Bentley A, Rety S. EF-hand calcium-binding proteins. Curr Opin Struct Biol, 2000, 10: 637–643



[31]Kolukisaoglu U, Weinl S, Blazevic D, Bastistic O, Kudla J. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43–58



[32]Song R, Llaca V, Messing J. Mosaic organization of orthologous sequences in grass genomes. Genome Res, 2002, 13: 1549–1555



[33]Langham R J, Walsh J, Dunn M, Ko C, Goff S A, Freeling M. Genomic duplication, fractionation and the origin of regulatory novelty. Genetics, 2004, 166: 935–945



[34]Brunner S, Keller B, Feuillet C. A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics, 2003, 164: 673–683



[35]Ilic K, SanMiguel P J, Bennetzen J L. A complex history of rearrangement in an orthologous region of the maize, sorghum, and rice genomes. Proc Natl Acad Sci USA, 2003, 100: 12265–12270



[36]Ramakrishna W, Emberton J, SanMiguel P, Ogden M, Llaca V, Messing J, Bennetzen J L. Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex. Plant Physiol, 2002b, 130: 1728–1738



[37]Lai J, Ma J, Swigonova Z, Ramakrishna W, Linton E, Llaca V, Tanyolac B, Park Y J, Jeong O Y, Bennetzen J L, Messing J. Gene loss and movement in the maize genome. Genome Res, 2004, 14: 1924–1931



[38]Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen J L, Messing J. Close split of maize and sorghum genome progenitors. Genome Res, 2004, 14: 1916–1923



[39]Zhang J-W(张俊文), Wei J-H(魏建华), Wang H-Z(王宏芝), Wang Y-Z(王彦珍), Ma R-C(马荣才), Li R-F(李瑞芬). The role and mechanism of CBL/CIPK signaling system response to stress in Plant. Prog Nat Sci (自然科学进展), 2008, 18: 841–846 (in Chinese)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[8] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[11] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[12] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[13] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[14] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[15] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!