欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 506-514.doi: 10.3724/SP.J.1006.2013.00506

• 耕作栽培·生理生化 • 上一篇    下一篇

夏玉米各器官氮素积累与分配动态及其对氮肥的响应

张经廷,刘云鹏,李旭辉,梁效贵,周丽丽,周顺利*   

  1. 农业部农作制度重点开放实验室 / 中国农业大学农学与生物技术学院,北京 100193
  • 收稿日期:2012-07-13 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2013-01-04
  • 通讯作者: 周顺利, E-mail: zhoushl@cau.edu.cn, Tel: 010-62732431
  • 基金资助:

    本研究由新世纪优秀人才支持计划(NETC-10-0790),国家自然科学基金项目(31071367)和国家公益性行业(农业)科研专项(200903007, 201203031)资助。

Dynamic Responses of Nitrogen Accumulation and Remobilization in Summer Maize Organs to Nitrogen Fertilizer

ZHANG Jing-Ting,LIU Yun-Peng,LI Xu-Hui,LIANG Xiao-Gui,ZHOU Li-Li,ZHOU Shun-Li*   

  1. Key Laboratory of Farming System, Ministry of Agriculture / College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2012-07-13 Revised:2012-11-16 Published:2013-03-12 Published online:2013-01-04
  • Contact: 周顺利, E-mail: zhoushl@cau.edu.cn, Tel: 010-62732431

摘要:

为探明夏玉米各器官氮素积累与分配动态及其对氮肥的响应,以郑单958为材料,设置5个施氮水平进行了连续2年的大田定位研究。结果表明,除籽粒外各器官的氮素积累进程都呈单峰曲线,茎鞘在吐丝期达到峰值,而叶片、苞叶和穗轴则到吐丝后12 d左右达到峰值,之后逐渐下降;籽粒和整株的氮素积累随生育进程持续增加,成熟期最高。与其他器官相比,叶片对氮素供给更敏感,氮胁迫使叶片氮素积累高峰提前,促进氮素提前向外转运,导致其率先衰老。施氮能提高各器官在各生育时期的氮素积累量和积累速率,但不改变氮素积累变化趋势。总体上,施氮量180 kg N hm-2可满足夏玉米对氮素的需求,获得较高的产量。以各器官氮素积累最大值与成熟期的差值计算,各处理再转运氮素对籽粒的贡献率均表现为叶片>茎鞘>穗轴>苞叶,各器官再转运氮素对籽粒贡献率之和平均为53.3%,其中苞叶和穗轴占12.3%,也是籽粒中氮素来源的重要组成部分。

关键词: 夏玉米, 器官, 氮肥水平, 氮素的积累, 分配与再分配

Abstract:

A successive two years′ field experiment with five N application rates was conducted using hybrid Zhengdan 958. The results showed that the process of N accumulation in all organs except grain conformed to a unimodal curve in the whole life cycle. The N accumulation in blade, husk and cob reached the peak at around 12 days after silking, and that in stem and sheath at silking stage and then decreased gradually. The N accumulation in grain and the whole plant continuously increased, and the maximum value appeared at maturity. Compared with other organs, blade was more sensitive to N supply and N deficit stress made the N accumulation peak in advance, accelerated blade N remobilization and promoted senescence of blade. N supply significantly improved N accumulation amount and N accumulation rate in all organs at various stages, but did not change the trend of N accumulation. On the whole, the demands of maize organs for N could be met at the N application rate of 180 kg N ha-1, and a higher grain yield also achieved. According to the maximum value of accumulated N in organs, the contribution of remobilized N from maize organs to grain showed a trend of: blade > stem and sheath > cob > bract, and the mean total contribution rate was 53.3%, of which cob and bract accounted for 12.3%, showing an essential part for grain N, too.

Key words: Summer maize, Organ, Nitrogen fertilizer level, Nitrogen accumulation, Distribution and remobilization

[1]Ye Y-L(叶优良), Huang Y-F(黄玉芳), Liu C-S(刘春生), Qu R-T(曲日涛), Song H-Y(宋海燕), Cui Z-L(崔振岭). Effect of in-season nitrogen management strategy on maize grain yield and nitrogen use efficiency. Acta Agron Sin (作物学报), 2011, 37(1): 152–157 (in Chinese with English abstract)



[2]Dinnes D L, Karlen D L, Jaynes D B, Kaspar T C, Hatfield J L, Colvin T S, Cambardella C A. Nitrogen management strategies to reduce nitrate leaching in tile-drained mid-western soils. Agron J, 2002, 94: 153–171



[3]Pan W L, Cambereto J J, Jackson W A, Moll R H. Utilization of previously accumulated and concurrently absorbed nitrogen during reproductive growth in maize. Plant Physiol, 1986, 82: 247–253



[4]Osaki M, Shinano T, Tadano T. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops. Soil Sci Plant Nutr, 1991, 37: 117–128



[5]Hu C-H(胡昌浩), Pan Z-L(潘子龙). Studies on the rules of assimilate accumulation and nutrient absorption and distribution in the summer maize plant II. Rules on the absorption, distribution and translocation of nitrogen, phosphorus and potassium. Sci Agric Sin (中国农业科学), 1982, 15(2): 38–48 (in Chinese with English abstract)



[6]Tong P-Y(佟屏亚), Ling B-Y(凌碧莹). Studies on the accumulation and distribution of nitrogen, phosphorus and potassium in summer maize. Maize Sci (玉米科学), 1994, 2(2): 65–69 (in Chinese)



[7]Wang Z-X(王忠孝), Wang Q-C(王庆成), Niu Y-Z(牛玉贞), Xu Q-Z(徐庆章), Gao X-Z(高学曾), Li D-H(李登海), Mao L-H(毛丽华). Studies on high-yield regularity of summer maize: II. Accumulation and distribution of nitrogen, phosphorus and potassium. Shandong Agric Sci (山东农业科学), 1989, (4): 10–14 (in Chinese with English abstract)



[8]Yang H-S(杨恒山), Gao J-L(高聚林), Zhang Y-Q(张玉芹), Bi W-B(毕文波), Zhang R-F(张瑞富), Fan X-Y(范秀艳), Gao Q(高强). Studies on absorption and use of N, P and K by spring maize under super-yield cultivation. Agric Res Arid Areas (干旱地区农业研究), 2011, 29(2): 15–20 (in Chinese with English abstract)



[9]Hay R E, Earley E B, Deturk E E. Concentration and translocation of nitrogen compounds in the corn plant (Zea mays L.) during grain development. Plant Physiol, 1953, 28: 606–621



[10]Xu X-Y(徐祥玉), Zhang M-M(张敏敏), Zhai B-N(翟丙年), Li S-X(李生秀), Zhang X-C(张兴昌), Wang Z-H(王朝辉). Genotypic variation in nitrogen use efficiency in summer maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(4): 495–499 (in Chinese with English abstract)



[11]Pollmer W G, Eberhard D, Klein D, Dhillon B S. Genetic control of nitrogen uptake and translocation in maize. Agron J, 2002, 94: 153–171



[12]Yi Z-X(易镇邪), Wang P(王璞), Shen L-X(申丽霞), Zhang H-F(张红芳), Liu M(刘明), Dai M-H(戴明宏). Effects of different types of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen fertilizer utilization in summer maize. Acta Agron Sin (作物学报), 2006, 32(5): 772–778 (in Chinese with English abstract)



[13]Lü P(吕鹏), Zhang J-W(张吉旺), Lu W(刘伟), Yang J-S(杨今胜), Su K(苏凯), Liu P(刘鹏), Dong S-T(董树亭), Li D-H(李登海). Effects of nitrogen application on yield and nitrogen use efficiency of summer maize under super-high yield conditions. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(4): 852–860 (in Chinese with English abstract)



[14]Zhao Y(赵营), Tong Y-A(同延安), Zhao H-B(赵护兵). Effects of different N rates on nutrients accumulation,transformation and yield of summer maize. Plant Nutr Fert Sci (植物营养与肥料学报), 2006, 12(5): 622–627 (in Chinese with English abstract)



[15]Xia L-K(夏来坤), Tao H-B(陶洪斌), Xu X-B(许学彬), Lu L-Q(鲁来清), Wang R-Z(王润正), Wang P(王璞). Effects of nitrogen application time on dry matter accumulation and nitrogen use efficiency of summer maize. J Maize Sci (玉米科学), 2009, 17(5): 138–140, 144 (in Chinese with English abstract)



[16]Lü P(吕鹏), Zhang J-W(张吉旺), Liu W(刘伟), Yang J-S(杨今胜), Liu P(刘鹏), Dong S-T(董树亭), Li D-H(李登海). Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(5): 1099–1107 (in Chinese with English abstract)



[17]Wang Y-L(王宜伦), Li C-H(李潮海), Tan J-F(谭金芳), Han Y-L(韩燕来), Zhang X(张许). Study on plant nitrogen accumulation characteristics and the effect of single application of base fertilizer on super-high-yield summer maize. Sci Agric Sin (中国农业科学), 2010, 43(15): 3151–3158 (in Chinese with English abstract)



[18]Song H-X(宋海星), Li S-X(李生秀). Dynamics of nutrient accumulation in maize plants under different water and N supply conditions. Sci Agric Sin (中国农业科学), 2003, 36(1): 71–76 (in Chinese with English abstract)



[19]Peoples M B, Dalling M J. The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: Noodern L D, Loopold A C, eds. Senescence and Aging in Plants. New York: Academic Press, 1988. pp 181–217



[20]Ye J(叶君), Gao J-L(高聚林), Yu X-F(于晓芳), Wang Z-G(王志刚), Sun J-Y(孙继颖), Li L-J(李丽君). Effects of nitrogen amount on senescence process in leaves and yield of super-high yield spring maize during flowering and heading period. J Inner Mongolia Agric Univ (内蒙古农业大学学报), 2011, 32(3): 178–183 (in Chinese with English abstract)



[21]Liu Y(刘艳), Wang R(汪仁), Hua L-M(华利民), Xie Z-J(解占军), Chen Y(陈玥). Effects of N application rates on early senescence of spring maize. J Shenyang Agric Univ (沈阳农业大学学报), 2011, 42(5): 539–543 (in Chinese with English abstract

[1] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[2] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[5] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[6] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[7] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[8] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[9] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[10] 高超,李学文,孙艳伟,周婷,罗纲,陈财. 淮河流域夏玉米生育阶段需水量及农业干旱时空特征[J]. 作物学报, 2019, 45(2): 297-309.
[11] 王洪章,刘鹏,贾绪存,李静,任昊,董树亭,张吉旺,赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析[J]. 作物学报, 2019, 45(10): 1544-1553.
[12] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响[J]. 作物学报, 2019, 45(10): 1565-1575.
[13] 李荣发,刘鹏,杨清龙,任昊,董树亭,张吉旺,赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响[J]. 作物学报, 2018, 44(7): 1032-1042.
[14] 胡旦旦,张吉旺,刘鹏,赵斌,董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响[J]. 作物学报, 2018, 44(6): 920-930.
[15] 高尚,明博,李璐璐,谢瑞芝,薛军,侯鹏,王克如,李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系[J]. 作物学报, 2018, 44(12): 1755-1763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!