欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1164-1171.doi: 10.3724/SP.J.1006.2013.01164

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个棉花GDSL脂肪酶基因的克隆与功能分析

佟祥超,王丽曼,胡文静,张雪颖,张天真,郭旺珍*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室 / 教育部杂交棉创制工程研究中心, 江苏南京210095
  • 收稿日期:2012-11-21 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB109300)资助。

Molecular Cloning and Functional Analysis of a GDSL Lipase Gene from Gossypium hirsutum L.

TONG Xiang-Chao,WANG Li-Man,HU Wen-Jing,ZHANG Xue-Ying,ZHANG Tian-Zhen,GUO Wang-Zhen*   

  1. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2012-11-21 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn

摘要:

GDSL脂肪酶与GXSXG脂肪酶是2个重要的脂肪酶亚家族。其中, GDSL家族脂肪酶具有水解酶活性, 能水解多种酯类物质。本试验根据新乡小吉无绒无絮(XinWX)和无绒有絮(XinFLM)近等基因系纤维起始期29K芯片竞争杂交结果, 选择了一个在纤维起始期具有极显著表达差异的EST序列(GenBank登录号为DR458916), 以该序列信息为探针, 利用电子克隆方法并进行cDNA及基因组全长基因PCR扩增、测序验证, 克隆获得一个陆地棉GDSL脂肪酶基因(GhGDSLGenBank登录号为KC186125)。该基因ORF1065 bp, 编码354个氨基酸, 含有5个外显子和4个内含子。该基因在二倍体棉种基因组中含一个拷贝, 在四倍体棉种基因组中含2个拷贝。序列比对显示该基因在四倍体棉种的2个亚组中独立进化, D亚组比A亚组变异大。染色体定位显示该基因2个拷贝分别位于A4 (Chr. 4)D4 (Chr. 22)染色体上。定量RT-PCR结果表明, GhGDSL在开花后3~10 d的纤维组织中表达量高, 其中在7124中表达高峰在8DPA, TM-1中表达高峰从5DPA持续到10DPA。利用[(TM-1×Hai7124)×TM-1]BC1S1群体开展GhGDSL功能与纤维、种子品质性状关联分析, 发现该基因A亚组的拷贝与种子脂肪含量存在显著相关(P=0.048)D亚组的拷贝与种子蛋白含量存在极显著相关(P=0.008)推测GhGDSL基因功能与种子中脂肪、蛋白代谢相关, 同时也参与纤维伸长过程。

关键词: GDSL脂肪酶, 克隆, 表达, 基因定位, 关联分析, 棉花

Abstract:

GDSL and GXSXG lipases are two important sub-families of lipases. Unlike the GXSXG motif-containing lipases, GDSL lipases have a GDSL motif and are active in hydrolysis and synthesis of abundant ester compounds. In this experiment, a EST sequence (GenBank accession No: DR458916) was screened based on extremely significant expression differences at fiber initiation stages between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines by 29K cotton genome array hybridization. Using the EST sequence as queries, the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) was screened and the corresponding cDNA sequences containing a complete ORF were assembled. Further, the ORF information was reconfirmed in transcriptional and genomic level. As a result, a novel gene encoding GDSL lipase was cloned, and the gene was designated as GhGDSL (Gossypium hirsutum GDSL; GenBank accession number: KC186125). GhGDSL included an open reading frame of 1 065 bp that encoded a polypeptide of 354 amino acids. The genome sequence indicated that GhGDSL had four introns and five exons. The homolog of GhGDSL had one copy in diploid cotton species G. herbaceum and G. raimondii and two copies in tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai 7124, respectively. Sequence alignment from different cotton species showed GhGDSL homoelogs in tetraploid were evolved independently, with more variations in D-subgenome than in A-subgenome. GhGDSL homoelogs in tetraploid were located on chromosome 4 (Chr. A4) and chromosome 22 (Chr. D4) by developing subgenome-specific SNP marker, respectively. Q-PCR analysis showed that GhGDSL was accumulated highly in ovule and fiber tissue at 3–10 days post anthesis (DPA), with expression peak at 8DPA in Hai7124 and high expression from 5DPA to 10 DPA in TM-1. The association analysis between GhGDSL and the traits related to fiber and seed qualities in corresponding [(TM-1×Hai7124)×TM-1] BC1S1 individuals showed that GhGDSL homolog in A-subgenome was significantly correlated with the seeds’ fat content (P=0.048), and GhGDSL homolog in D-subgenome was very significantly correlated with the seeds’ protein content (P=0.008). These results suggested that GhGDSL might be functionally important in the metabolic process of lipid and protein in seeds and in the process of fiber development.

Key words: GDSL lipase, Cloning, Expression, Gene mapping, Association analysis, Cotton

[1]Kim Y. Cloning and expression of a lipase gene from rice (Oryza sativa cv. Dongjin). Mol Cells, 2004, 18: 40–45



[2]Roberts M R, Foster G D, Blundell R P, Robinson S W, Kumar A, Draper J, Scott R. Gametophytic and sporophytic expression of an anther-specific Arabidopsis thaliana gene. Plant J, 1993, 3: 111–120



[3]Pringe D, Dickstein R. Purification of ENOD8 proteins from Medicago sativa root nodules and their characterization as esterases. Plant Physiol Biochem, 2004, 42: 73–79



[4]Brick D J, Brumlik M J, Buckley J T, Cao J X, Davies P C, Misra S, Tranbarger T J, Upton C. A new family of lipolytic plant enzymes with members in rice, Arabidopsis and maize. FEBS Lett, 1995, 377: 475–480



[5]Oh I S, Park A R, Bae M S. Kwon S J, Kin Y S, Lee J E, Kang N Y, Lee S, Cheong H, Park O K. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell, 2005, 17: 2832–2847



[6]Rupperl M, Woll J, Giritch A, Genady E, Ma X Y, Stochigt J. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system. Planta, 2005, 222: 888–898



[7]Basra A, Malik C P. Development of the cotton fiber: International fibers. In: Basra A M ed. Cotton Fibers. New York: Hawthorne Press, 1984. pp 231–267



[8]Ji S J, Lu Y C, Feng J X, Wei G, Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucl Acids Res, 2003, 31: 2534–2543



[9]Song X L, Wang K, Guo W Z, Zhang J, Zhang T Z. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome, 2005, 48: 378–390



[10]Van Ooijen J W, Voorrips R E. JoinMap Version 3.0: Software for the Calculation of Genetic Linkage Maps. Wageningen, the Netherlands: CPRO-DLO, 2001



[11]Guo W Z, Cai C P, Wang C B, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527–541



[12]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Heredity, 2002, 93: 77–78



[13]Paterson A H, Brubaker C L, Jonathan F. Rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[14]Wu Y-T(武耀廷), Liu J-Y(刘进元). A modified hot borate method for efficient isolation of total RNA from different cotton tissues. Cotton Sci (棉花学报), 2004, 16(2): 67–71 (in Chinese with English abstract)



[15]Jiang J-X(蒋建雄), Zhang T-Z(张天真). Tissues with CTAB acidic phenolic method. Cotton Sci (棉花学报), 2003, 15(3): 166−167 (in Chinese with English abstract)



[16]Licak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2(-delta delta C(t)) method. Method, 2001, 25: 402–408



[17]Ling H, Zhao J Y, Zuo K J, Qiu C X, Yao H Y, Q J, Sun X F, Tang K X. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. J Biochem Mol Biol, 2006, 39: 297–303



[18]Sun S-K(孙善康), Chen J-H(陈建华), Xiang S-K(项时康), Wei S-J(魏守军). Study on the nutritional quality of cotton seeds. Sci Agric Sin (中国农业科学), 1987, 20(5): 12–16 (in Chinese with English abstract)



[19]Beisson F, Arondel V, Verger R. Assaying Arabidopsis lipase activity. Biochem Soc Transact, 2000, 28: 773–775



[20]Mayfield J A, Fiebig A, Johnstone S E, Preuss D. Gene families from Arabidopsis thaliana pollen coat proteome. Science, 2001, 292: 2482–2485



[21]Hong J K, Choi H W, Hwang I S, Kin D S, Kim N H, Choi D S, Kim Y J, Hwang B K. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta, 2008, 227: 539–558



[22]Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hilunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosythesis. Plant Cell, 2007, 19: 3692–3704



[23]Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006, 18: 651–664



[24]Gou J Y, Wang L J, Chen S P, Hu W L, Chen X Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res, 2007, 17: 422–434



[25]Wei M-Y(魏明玉), Zhou J(周佳), Yan S-Z(闫素珍), Wang Z(王政), Tan X-L(谭小力). Cloning and expression analysis of an oil-content related lipase (BnSDP1) gene in Brassica napus. Chin Oil Crop Sci (中国油料作物学报), 2011, 33(4): 338–343 (in Chinese with English abstract)

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[5] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[6] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[7] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[8] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[9] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[12] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[13] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[14] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!