欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1155-1163.doi: 10.3724/SP.J.1006.2013.01155

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆结荚习性、荚色和种皮色相关野生片段分析

王吴彬,何庆元,杨红燕,向仕华,邢光南,赵团结*,盖钧镒*   

  1. 南京农业大学大豆研究所 / 国家大豆改良中心 / 农业部大豆生物学与遗传育种重点实验室(综合) / 作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2012-08-21 修回日期:2013-03-11 出版日期:2013-07-12 网络出版日期:2013-04-23
  • 通讯作者: 赵团结, tjzhao@njau.edu.cn; 盖钧镒, E-mail: sri@njau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB1184, 2011CB1093), 国家自然科学基金项目(31071442, 30900902), 国家公益性行业(农业)科研专项经费项目(200803060), 江苏省优势学科建设工程专项和国家重点实验室自主课题, 国家现代农业产业技术体系建设专项(CARS-04)和农业部大豆生物学与遗传育种创新团队项目资助。

Identification of Wild Segments Associated with Stem Termination, Pod Color and Seed Coat Color in Soybean

WANG Wu-Bin,HE Qing-Yuan,YANG Hong-Yan,XIANG Shi-Hua,XING Guang-Nan,ZHAO Tuan-Jie*,GAI Jun-Yi*   

  1. Soybean Research Institute / National Center for Soybean Improvement / MOA Key Laboratory for Biology and Genetic Improvement of Soybean (General) / National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2012-08-21 Revised:2013-03-11 Published:2013-07-12 Published online:2013-04-23
  • Contact: 赵团结, tjzhao@njau.edu.cn; 盖钧镒, E-mail: sri@njau.edu.cn

摘要:

结荚习性、荚色和种皮色是大豆的重要形态性状,与进化密切相关。利用由151个家系组成的野生大豆(Glycinne soja Sieb et Zucc.)染色体片段代换系(CSSL)群体(SojaCSSLP1),通过不同表型CSSL组间比对,分别检测到与结荚习性、荚色和种皮色相关的1个、3个和2个野生片段(基因)。其中,5个野生片段(基因)分别与前人在栽培豆中检测到的无限结荚Dt1、荚色L1、荚色L2、绿种皮G和黑种皮i基因相对应,说明野生大豆与栽培大豆间、栽培大豆与栽培大豆间在这些片段上均存在等位变异分化,是与大豆进化相关的基因/片段。另一个与荚色相关的Satt273野生片段能使大豆表现黑荚,可能是本研究的新发现,但还需进一步验证。

关键词: 野生大豆, 染色体片段代换系, 荚色, 结荚习性, 种皮色

Abstract:

Stem termination (ST), pod color (PC) and seed coat color (SCC) are important morphological traits, which are related to evolution in soybean. By using a wild soybean (Glycinne soja Sieb et Zucc.) chromosome segment substitution line (CSSL) population, designated as SojaCSSLP1 composed of 151 lines, one ST, three PC and two SCC wild segments/alleles were detected based on the comparison of different CSSL groups with a same phenotype on the respective trait. Among them, five wild alleles/segments identified in this study were corresponding to Dt1, L2, L1, G and em, respectively, which indicated that there existed allele differentiation happened between wild and cultivated soybean as well as between cultivated soybeans on these loci/segments and that the genes/segments involved with domestication and evolution. The wild segment of Satt273 for PC might be a novel gene/segment, which needed further verification. The identification of the genes/segments provide basic materials for cloning the wild alleles, studying the wild allele function and recombination of the wild alleles/segments.

Key words: Wild soybean, Chromosome segment substitution line, Stem termination, Pod color, Seed coat color

[1]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509



[2]Lee S H, Bailey M A, Mian M A R, Shipe E R, Ashley D A, Parrott W A, Hussey R S, Boerma H R. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet, 1996, 92: 516–523



[3]Orf J H, Chase K, Jarvik T, Mansur L, M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1652–1656



[4]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509



[5]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561



[6]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011–1016



[7]Bernard R L. Two genes affecting stem termination in soybeans. Crop Sci, 1972, 12: 235–239



[8]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128



[9]Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1[W][OA]. Plant Physiol, 2010, 153: 198–210



[10]Tian Z, Wang X, Lee R, Li Y, Specht J E, Nelson R L, McClean P E, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA, 2010, 107: 8563–8568



[11]Bernard R L. The inheritance of pod color in soybeans. J Hered, 1967, 58: 165–168



[12]Hou F F, Thseng F S. Studies on the flooding tolerance of soybean seed: varietal differences. Euphytica, 1991, 57: 169–173



[13]Takahashi R. Association of soybean genes I and T with low-temperature induced seed coat deterioration. Crop Sci, 1997, 37: 1755–1759



[14]Gai J-Y(盖钧镒), Plant Breeding (Species) (作物育种学各论), 2nd Edn. Beijing: China Agriculture Press, 2006. pp 235–236 (in Chinese)



[15]Song J(宋健), Guo Y(郭勇), Yu L-J(于丽杰), Qiu L-J(邱丽娟). Progress in genes related to seed-coat color in soybean. Hereditas (遗传), 2012, 34: 687–694 (in Chinese)



[16]Clough S J, Tuteja J H, Li M, Marek L F, Shoemaker R C, Vodkin L O. Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome, 2004, 47: 819–831



[17]Toda K, Yang D, Yamanaka N, Watanabe S, Harada K, Takahashi R. A single-base deletion in soybean flavonoid 3’-hydroxylase gene is associated with gray pubescence color. Plant Mol Biol, 2002, 50: 187–196



[18]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162



[19]Huang X Q, Cöster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379–1389



[20]Pillen K, Zacharias A, Léon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 107: 340–352



[21]Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci, 2002, 52: 319–325



[22]Wan J-L(万建林), Zhai H-Q(翟虎渠), Wan J-M(万建民), Yasui H, Yoshimura A. Mapping QTL for traits associated with resistance to ferrous iron toxicity in rice (Oryza sativa L.), using japonica chromosome segment substitution lines. Acta Genet Sin (遗传学报), 2003, 30: 893–898



[23]Hao W(郝伟), Jin J(金健), Sun S-Y(孙世勇), Zhu M-Z(朱美珍), Lin H-X(林鸿宣). Construction of chromosome segment substitution lines carrying overlapping chromosome segments of the whole wild rice genome and identification of quantitative trait loci for rice quality. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32: 354–362 (in Chinese)



[24]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA, 1996, 93: 15503–15507



[25]Yamamoto T, Lin H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885–891



[26]Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Gai J Y. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica, 2013, 189: 293–307



[27]Qiu L-J(邱丽娟), Chang R-Z(常汝镇). Descriptors and Data Standard for Soybean (Glycine spp.) (大豆种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006. p 59 (in Chinese)



[28]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13



[29]Young N D, Tanksley S D. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989, 77: 95–101



[30]Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot, 2007, 100: 1027–1038



[31]Maughan P J, Maroof M A S, Buss G R. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574–579



[32]Zhao R-B(赵荣兵), Wang Y-X(王永霞), Ding J-Q(丁俊强), Zhang X-C(张学才), Wu J-Y(吴建宇). Fine mapping of resistance gene Rscmv1 to maize dwarf mosaic virus. J Maize Sci (玉米科学), 2011, 19: 10–13 (in Chinese)



[33]Zhao L(赵亮), Cai C-P(蔡彩平), Zhang T-Z(张天真), Guo W-Z(郭旺珍). Fine mapping of the red plant gene R1 in upland cotton (Gossypium hirsutum). Chin Sci Bull (科学通报), 2009, 54: 888–891 (in Chinese)



[34]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[35]Zhang Q, Shen B Z, Dai X K, Mei M H, Saghai-Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male-sterility in rice. Proc Natl Acad Sci USA, 1994, 91: 8675–8679



[36]Giovannoni J J, Wing R A, Ganal M W, Tanksley S D. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucl Acids Res, 1991, 19: 6553–6558



[37]Martin G B, Williams J G, Tanksley S D. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA, 1991, 88: 2336–2340

[1] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[2] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[3] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[4] 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484.
[5] 周勇,陶亚军,姚 锐,李 畅,谭文琛,裔传灯,龚志云,梁国华*. 利用染色体片段代换系定位水稻叶片形态性状QTL[J]. 作物学报, 2017, 43(11): 1650-1657.
[6] 朱娉慧**,陈冉冉**,于洋,宋雪薇,李慧卿,杜建英,李强,丁晓东,朱延明*. 碱胁迫相关基因GsWRKY15的克隆及其转基因苜蓿的耐碱性分析[J]. 作物学报, 2017, 43(09): 1319-1327.
[7] 周可,李燕,王世明,崔国庆,杨正林,何光华,凌英华,赵芳明. 水稻紫鞘染色体片段代换系Z519的鉴定及PSH1候选基因分析[J]. 作物学报, 2017, 43(07): 974-982.
[8] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[9] 彭倩,薛亚东,张向歌,李慧敏,孙高阳,李卫华,谢慧玲,汤继华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点[J]. 作物学报, 2016, 42(04): 482-491.
[10] 陈晨, 孙晓丽, 刘艾林, 端木慧子, 于洋, 肖佳雷, 朱延明. 野生大豆碳酸盐胁迫应答基因GsMIPS2的克隆及功能分析[J]. 作物学报, 2015, 41(09): 1343-1352.
[11] 向佳,李燕,樊亚伟,许军红,郑丽媛,何光华,杨正林,王楠,赵芳明*. 一个具有主效晚抽穗基因的水稻染色体片段代换系的鉴定、形态分析及Ehd4-2定位[J]. 作物学报, 2015, 41(05): 683-691.
[12] 刘鑫燕,朱孔志,张昌泉,洪燃,孙鹏,汤述翥,顾铭洪,刘巧泉. 利用9311来源的粳型染色体片段代换系定位控制稻米糊化温度的微效QTL[J]. 作物学报, 2014, 40(10): 1740-1747.
[13] 姜妍,吴存祥,胡珀,侯文胜,祖伟,韩天富. 不同结荚习性大豆品种顶端花序发育过程的形态解剖学特征[J]. 作物学报, 2014, 40(06): 1117-1124.
[14] 何蕊,石玉真,张金凤,梁燕,张保才,李俊文,王涛,龚举武,刘爱英,商海红,巩万奎,白志川,袁有禄. 利用染色体片段代换系定位陆地棉株高QTL[J]. 作物学报, 2014, 40(03): 457-465.
[15] 王丽侠,程须珍,王素华,刘岩. 绿豆几个表型性状的遗传特性分析[J]. 作物学报, 2013, 39(07): 1172-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!