作物学报 ›› 2013, Vol. 39 ›› Issue (07): 1148-1154.doi: 10.3724/SP.J.1006.2013.01148
陈红霖1,2,**,向阳海1,**,赵纪莹1,2,尹德东1,2,梁国华3,翟文学1,江光怀1,*
CHEN Hong-Lin1,2,**,XIANG Yang-Hai1,**,ZHAO Ji-Ying1,2,YIN De-Dong1,2,LIANG Guo-Hua3,ZHAI Wen-Xue1,JIANG Guang-Huai1,*
摘要:
水稻类病变突变体c5是由粳稻品种中花11种子经化学诱变剂EMS (甲基磺酸乙酯)诱变处理得到的。该突变体叶片在三叶期开始出现近似圆形褐色斑点,经DAB染色和台酚蓝染色显示这些斑点积累了过多的H2O2并引起程序性细胞死亡。与野生型相比,突变体c5的成熟期株高从110.4 cm减少到74.6 cm,有效分蘖数和每穗着粒数分别减少23.7%和28.5%,千粒重和结实率都显著降低,此外,c5还表现出对白叶枯病菌的广谱抗病性,对10个菲律宾生理小种都有强烈的抗性反应。遗传分析表明,c5的突变性状受单隐性核基因控制。利用c5和明恢86配组形成的包含6269个单株的F2群体和18个分子标记,将c基因限定在水稻第5染色体长臂STS标记S41和S47之间大约102 kb的遗传距离内。序列分析发现该区间内其中有11个编码基因,且它们与现已报道的类病变基因都不同,暗示c5可能是一个新型类病变性状控制基因。
[1]Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685–694[2]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen R, Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley mlo gene: A novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705[3]Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the lls1 gene of maize. Cell, 1997, 89: 25–3l[4]Badigannavar A M, Kale D M, Eapen S, Murty G S S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002, 93: 50–52[5]Chen X-F(陈析丰), Jin Y(金杨), Ma B-J(马伯军). Progress on the studies of rice lesion mimics and their resistant mechanism to the pathogens. Acta Phytopathol Sin (植物病理学报), 2011, 41(1): 1–9 (in Chinese with English abstract)[6]Matin M N, Saief S A, Rahman M M, Lee D H, Kang H, Lee D S, Kang S G. Comparative phenotypic and physiological characteristics of spotted leaf 6 (spl6) and brown leaf spot2 (bl2) lesion mimic mutants (LMM) in rice. Mol Cells, 30: 533–543[7]Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619[8]Yamanouchi U, Yano M, Lin H X, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535[9]Liu D-F(刘道峰), Cheng Z-K(程祝宽), Liu G-Q(刘国庆), Liu G-Z(刘国振), Wang B(王斌), Zhao X-F(赵显峰), Zhu L-H(朱立煌). Identification of rice lesion mimic mutant lmi and gene mapping. Chin Sci Bull (科学通报), 2003, 48(8): 831–835 (in Chinese)[10]Babu R, Jiang C J, Xu X, Kottapalli K R, Takatsuji H, Miyao A. Isolation, fine mapping and expression profiling of a lesion mimic genotype, spl(NF4050-8) that confers blast resistance in rice. Theor Appl Genet, 122: 831–854[11]Zeng L, Yin Z, Chen J, Leung H, Wang G L. Fine genetic mapping and physical delimitation of the lesion mimic gene Spl11 to a 160-kb DNA segment of the rice genome. Mol Genet Genomics, 2002, 268: 253–261[12]Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619[13]Liu G, Wang L, Zhou Z, Leung H, Wang G L, He C. Physical mapping of a rice lesion mimic gene, Spl1, to a 70-kb segment of rice chromosome 12. Mol Genet Genomics, 2004, 272: 108–115[14]Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2008, 38: 29–37[15]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 285: 11308–11313[16]Zeng L R, Qu S H, Bordeos A, Yang C W, Baraoidan M, Yan H Y, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a u-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795–2808[17]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirohiko H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860[18]Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μl (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2009, 184: 566–573[19]Takahashi A, Agrawal G K Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell, 2007, 19: 2940–2951[20]Chern MFitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511–520[21]Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384[22]Kim J A, Agrawal G K, Rakwal R, Han K S, Kim K N, Yun C H, Heu S, Park S Y, Lee Y H. Jwa N S. Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun, 2003, 300: 868–876[23]Peng D H, Qiu D W, Ruan L F, Zhou C F, Sun M. Protein elicitor PemG1 from Magnaporthe grisea induces systemic acquired resistance (SAR) in plants. Mol Plant Microbe Interact, 24: 1239–1246[24]Hu G, N Yalpani, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105[25]Tang X Y, Xie M T, Kim Y J, Zhou J M, Klessig D F, Martin G B. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell, 1999, 11: 15–29[26]McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, Tanksley S D. Molecular mapping of rice chromosome. Theor Appl Genet, 1988, 76: 815–829[27]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257–279[28]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Genetics Genomics, 1996, 252: 597–607[29]Yin Z C, Chen J, Zeng L R, Goh M L, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869–876[30]Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J, 1997, 11: 1187–1194[31]Buege J A, Aust S D. Microsomal lipid peroxidation. Methods Enzymol, 1978, 52: 302–310[32]Wang J-J(王建军), Zhu X-D(朱旭东), Wang L-Y(王林友), Zhang L-H(张利华), Xue Q-Z(薛庆中), He Z-H(何祖华). Physiological and genetic analysis of lesion resembling disease mutants (lrd) of Oryza sativa L. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2004, 30(3): 331–338 (in Chinese with English abstract)[33]Mizobuchi R, Hirabayashi H. Isolation and characterization of rice lesion mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci, 2002, 163: 345–353[34]Jung Y H, Rakwal R, Agrawal G K, Shibato J, Kim J A, Lee M O, Choi P K, Jung S H, Kim S H, Koh H J, Yonekura M, Iwahashi H, Jwa N S. Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). J Proteome Res, 2006, 5: 2586–2598[35]Li X-L(李秀兰), Wang P-R(王平荣), Qu Z-C(曲志才), Sun X-Q(孙小秋), Wang B(王兵), Deng X-J(邓晓建). Genetic analysis and fine mapping of a lesion mimic mutant C23 in rice. Sci Agric Sin (中国农业科学), 2010, 43(18): 3691–3697 (in Chinese with English abstract) |
[1] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[2] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[3] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[4] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[5] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[6] | 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539. |
[7] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[8] | 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868. |
[9] | 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293. |
[10] | 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223. |
[11] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[12] | 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323. |
[13] | 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347. |
[14] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[15] | 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063. |
|