欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1454-1461.doi: 10.3724/SP.J.1006.2015.01454

• 研究简报 • 上一篇    

玉米茉莉酸甲酯不敏感突变体的筛选

查象敏1, 汪海1, 路小铎2, 张春义1, 黄大昉1, *, 郎志宏1, *   

  1. 1中国农业科学院生物技术研究所, 北京 100081; 2齐鲁师范学院生命科学学院, 山东章丘 250200
  • 收稿日期:2015-02-09 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 黄大昉, E-mail:huangdafang@caas.cn; 郎志宏, E-mail:langzhihong@caas.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31270317)资助

Screening of Methyl Jasmonate-Insensitive Mutants in Maize

ZHA Xiang-Min1, WANG Hai1, LU Xiao-Duo2, ZHANG Chun-Yi1, HUANG Da-Fang1, *, LANG Zhi-Hong1, *   

  1. 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 School of Life Sciences, Qilu Normal University, Zhangqiu 250200, China
  • Received:2015-02-09 Published:2015-09-12 Published online:2015-09-12

摘要: 植物激素茉莉酸(jasmonic acid, JA)作为一种可以长距离运动的信号分子在植物对昆虫侵害的系统抗性中起核心调控作用。为了解析玉米JA信号途径及抗虫机制, 本研究利用改进的玉米突变体的筛选方法, 筛选与JA信号途径相关的突变体用于下一步的研究。将甲基磺酸乙酯(ethyl methane sulfonate, EMS)诱变的玉米突变体库6118份种子分别置含有外源茉莉酸甲酯(methyl jasmonate, MeJA)的培养基中培养, 通过观察玉米根系的生长情况, 确定对MeJA的不同耐受性。当MeJA终浓度为50 µmol L-1时, 初步筛选到对MeJA不敏感的I级耐受性突变体61株; 当MeJA终浓度分别为100 µmol L-1和200 µmol L-1时进行验证, 得到的耐受性事件分别为37株和10株。对自交收获的子一代遗传性分析表明, 这些突变体对MeJA表现出的耐受性具有可遗传性。筛选获得的对MeJA不敏感突变体可能与JA调控有关, 是研究玉米JA信号途径的很好材料。

关键词: MeJA/JA, 玉米突变体库筛选, MeJA不敏感, 玉米虫害应答

Abstract: The phytohormone jasmonate plays a pivotal role in plant systematic resistance to herbivores attack as a long-distance mobile signal. To demonstrate the Jasmonic acid (JA) signal pathway and the insect-resistant mechanism in maize, we utilized an improved approach to screen the maize mutants associated with JA signal pathway, which will be available for further research. The 6118 lines’ seeds from EMS-mutagenic maize mutants library were cultivated in the medium containing the exogenous MeJA. The different tolerances of the mutants to MeJA were identified by observing the growth of maize roots. When the final concentration of MeJA was 50 µmol L-1, 61 MeJA-insensitive mutants with tolerance Grade I were obtained in the primary screening experiment. When the final concentration of MeJA was 100 µmol L-1 or 200 µmol L-1, 37 and 10 tolerant events were gained in the confirmation experiments, respectively. Then, we analyzed the heredity of M1 seeds tolerant to MeJA. The results showed that the tolerance of the mutants to MeJA was hereditable. The MeJA-insensitive mutants associated with JA regulation pathway are the potential materials for the further studies of JA signal pathway and insect resistant mechanism in maize.

Key words: MeJA/JA, Screening maize mutants library, MeJA-insensitive, Insect attack response

[1] Reymond P, Bodenhausen N, Van Poecke R M, Krishnamurthy V, Dicke M, Farmer E E. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell , 2004, 16: 3132-3147
[2] 李常保. 以番茄为模式研究植物对昆虫抗性反应的分子基础. 山东农业大学博士学位论文, 山东泰安, 2006 Li C B. Research of Plant Insect-resistant Molecular Basis with Tomato as a Model System. PhD Dissertation of Shandong Agricultural University, Tai’an, China, 2006 (in Chinese with English abstract)
[3] Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot , 2007, 100: 681-697
[4] Wasternack C, Kombrink E. Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol , 2010, 5: 63-77
[5] Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol , 2009, 60: 183-205
[6] Browse J. The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry , 2009, 70: 1539-1546
[7] Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis—structure, function, regulation. Phytochemistry , 2009, 70: 1532-1538
[8] Acosta I F, Farmer E E. Jasmonates. The American Society of Plant Biologists, The Arabidopsis Book, 2010, e0129
[9] Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta , 2012, 236: 1351-1366
[10] 刘庆霞, 李梦莎, 国静. 茉莉酸生物合成的调控及其信号通路. 植物生理学报, 2012, 48: 837-844 Liu Q X, Li M S, Guo J. Regulation of jasmonic acid biosynthesis and Jasmonic acid signaling pathway. Plant Physiol J , 2012, 48: 837-844 (in Chinese with English abstract)
[11] Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell , 2009, 21: 2220-2036
[12] Chung H S, Howe G A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell , 2009, 21: 131-145
[13] Fonseca S, Chico J M, Solano R. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol , 2009, 12: 539-547
[14] Park J H, Halitschke R, Kim H B, Baldwin I T, Feldmann K A, Feyereisen R. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J , 2002, 31: 1-12
[15] Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3 , lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA , 2000, 97: 10625-10630
[16] Feys B, Benedetti C E, Penfold C N, Turner J G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell , 1994, 6: 751-759
[17] Xie D X, Feys B F, James S, Nieto-Rostro M, Turner J G. COI1 : an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science , 1998, 280: 1091-1094
[18] Staswick P E, Su W, Howell S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA , 1992, 89: 6837-6840
[19] 樊双虎, 郭文柱, 路小铎, 张春义. 玉米EMS突变体库构建及突变体初步鉴定. 安徽农业科学, 2014, (11): 3162-3165 Fan S H, Guo W Z, Lu X D, Zhang C Y. Construction and preliminary identification of EMS mutant library in maize. J Anhui Agric Sci , 2014, (11): 3162-3165 (in Chinese with English abstract)
[20] 章丽, 龚一富, 刘晓丹, 潘益芳, 刘增美, 朱天艺. 外源MeJA胁迫对盐生杜氏藻生理生化特性的响. 生物学杂志, 2013, (3): 38-42 Zhang L, Gong Y F, Liu X D, Pan Y F, Liu Z M, Zhu T Y. Effects of exogenous MeJA stress on physiological and biochemical characteristics of Dunaliella salina . J Biol , 2013, (3): 38-42 (in Chinese with English abstract)
[21] 范锡麟, 王少岭, 肖应辉, 王志龙. 番茄突变体 jai1-1 高效筛选—再生体系的建立. 作物研究, 2013, (3): 224-228 Fan X L, Wang S L, Xiao Y H, Wang Z L. Establishment of high efficient screening and regeneration system of tomato mutant jai1-1 in vitro. Crop Res , 2013, (3): 224-228 (in Chinese with English abstract)
[22] 方海涛. 蒙古扁桃对外源MeJA的诱导抗性反应及其对黄褐天幕毛虫的影响. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2013 Fang H T. Induced Resistance of Mongol Almond, Amygdalus mongolica , to Exogenous Methyl Jasmonate and Effect on Tent Caterpillar, Malacosoma Neustria testacca . PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, China, 2013 (in Chinese with English abstract)
[23] 郑文光, 耿宇, 李常保, 李传友. 茉莉酸信号转导突变体ber15的分离和基因克隆表明油菜素内的合成影响茉莉酸信号转导. 植物学通报, 2006, 23: 603-610 Zheng W G, Geng Y, Li C B, Li C Y. Characterization of jasmonic acid response mutant ber15 demonstrates cross talk between jasmonic acid and brassinosteriod signaling. Chin Bull Bot , 2006, 23: 603-610 (in Chinese with English abstract)
[24] Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J G. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J , 2002, 32: 457-466
[25] 李清清, 李大鹏, 李德全. 茉莉酸和茉莉酸甲酯生物合成及其调控机制. 生物技术通报, 2010, (1): 53-57 Li Q Q, Li D P, Li D Q. The research progress in biosynthesis and regulation of jasmonates. Biotech Bull , 2010, (1): 53-57 (in Chinese with English abstract)
[26] Acosta I F, Laparra H, Romero S P, Schmelz E, Hamberg M, Mottinger J P, Moreno M A, Dellaporta S L. Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science , 2009, 323: 262-265
[27] Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery R J, Kolomiets M V. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell , 2012, 24: 1420-1436
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!