欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1445-1453.doi: 10.3724/SP.J.1006.2015.01445

• 研究简报 • 上一篇    下一篇

谷子转录因子基因SiNAC45在拟南芥中对低钾及ABA的响应

王二辉1, 2, *, 胡利芹2, *, 薛飞洋1, 2, 李微微2, 徐兆师2, 李连城2, 周永斌2, 马有志2, 刁现民2, 贾冠清2, 陈明2, *, 闵东红1, *   

  1. 1 西北农林科技大学农学院 / 旱区作物逆境生物学国家重点实验室, 陕西杨凌712100; 2 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部麦类生物学与作物遗传育种重点实验室, 北京100081
  • 收稿日期:2015-03-27 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 闵东红, E-mail:mdh2493@126.com, Tel: 13609123593; 陈明, E-mail:chenming02@caas.cn, Tel: 13683360891
  • 作者简介:第一作者联系方式: E-mail:wangerhui191132@163.com, Tel: 13366320737 **同等贡献(Contributed equally to this work)
  • 基金资助:
    本研究由国家转基因生物新品种培育重大专项(2014ZX08002-003B), 陕西省农业科技攻关项目(2013K02-01), 陕西省科技统筹创新工程计划项目(2014KTZB02-01-01)和北京市科技计划项目(Z14110000231418)资助

Overexpression of Millet Transcription Factor Gene SiNAC45 to Response of Low Potassium Stress and ABA Treatment in Transgenic Arabidopsis

WANG Er-Hui1, 2, **, HU Li-Qin2, **, XUE Fei-Yang1, 2, LI Wei-Wei2, XU Zhao-Shi2, LI Lian-Cheng2, ZHOU Yong-Bin2, MA You-Zhi2, DIAO Xian-Min2, JIA Guan-Qing2, CHEN Ming2, *, MIN Dong-Hong1, *   

  1. 1 College of Agronomy, Northwest A&F University / State Key Laboratory of Arid Region Crop Adversity Biology, Yangling 712100, China; 2 Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility For Crop Gene Resource and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crop, Ministry of Agriculture, Beijing 100081, China
  • Received:2015-03-27 Published:2015-09-12 Published online:2015-09-12

摘要: NAC (nascent polypeptide-associated complex)转录因子在植物生长发育和非生物胁迫响应等过程中发挥重要的调控作用, 目前, 关于NAC转录因子参与耐低钾胁迫的研究报道很少。本研究在前期工作对低钾胁迫的转录组测序基础上, 对筛选出的一个低钾胁迫下表达量上调的NAC类转录因子基因SiNAC45进行了深入研究。结果表明, SiNAC45基因全长1383 bp, 编码461个氨基酸, 分子量为50.7 kD, 等电点为6.92。SiNAC45在20~100个氨基酸之间有一段NAM保守结构域。系统进化树结果显示, SiNAC45位于NAC基因家族的第1亚族。基因表达谱分析显示, SiNAC45主要在谷子根部表达, 并且能够被低钾和ABA诱导表达。亚细胞定位结果显示SiNAC45定位于细胞核。基因功能分析结果显示, 在不同浓度低钾处理下, 和野生型拟南芥相比, SiNAC45转基因拟南芥的根长和植株鲜重显著增加, 说明过表达SiNAC45可以提高转基因植物对低钾胁迫的抗性。下游基因表达分析结果显示, 在SiNAC45转基因植物中两种重要的钾离子转运体基因AKT1HAK1的表达显著提高, 证明SiNAC45通过调控植物钾离子转运体基因的表达影响植物对低钾胁迫的耐性。种子萌发试验结果显示, SiNAC45转基因拟南芥与野生型拟南芥相比对ABA的敏感性降低, 说明SiNAC45可能负调ABA信号。

关键词: 谷子, NAC转录因子, 低钾胁迫, ABA反应, 基因功能分析

Abstract: NAC (nascent polypeptide-associated complex) like transcription factors play important role in plant growth and development, abiotic stress response, and other processes. Currently, few researches reported NAC like transcription factors involving in tolerance to low potassium stress. In this study, we found and researched a NAC like transcription factor gene SiNAC45 on the basis of transcriptome sequence of millet under low potassium stress which had been completed in previous work. The result show that the full-length of SiNAC45 is 1383 bp, encoding 461 amino acids, with molecular weight and isoelectric point of 50.7 kD and 6.92, respectively. There is a conserved NAM domain between 20-100 amino acids of SiNAC45. The phylogenetic tree showed that SiNAC45 belonged to the first subfamily of NAC gene family. The gene expression profile results indicated SiNAC45 mainly expressed in roots and was induced by ABA and low potassium treatment. The protein subcellular localization results of SiNAC45 revealed that it was localized in the nucleus. Gene functional analysis showed that under treatment with different concentrations of potassium, root length and fresh weight of SiNAC45 transgenic Arabidopsis significantly increased compared with those of wild-type Arabidopsis, and there was no significant difference in the number of lateral roots between transgenic and wild-type Arabidopsis, indicating that overexpressing of SiNAC45 in transgenic plants can enhance tolerance to low potassium stress. Expression analysis of downstream gene showed that expression of two important potassium transporter genes AKT1 and HAK1 increased significantly in SiNAC45 transgenic plants, indicating that SiNAC45 affects the tolerance to low potassium stress of plants by regulating the expression of potassium transporter gene. Seed germination test results showed that Arabidopsis carrying SiNAC45 decreased the sensitivity to ABA compared with wild-type Arabidopsis, indicating that SiNAC45 maybe negatively regulate ABA signal pathway.

Key words: Millet, NAC transcription factor, Low potassium stress, ABA response, Gene function analysis

[1] Olsen A N, Ernst H A, Leggio L L, Skriver K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci , 2005, 10: 79-87.
[2] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana . DNA Res , 2003, 10: 239-247
[3] Souer E, van Houwelingen A, Kloos D, Mol J, Koes R. The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell , 1996, 85: 159-170
[4] Le D T, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi- Shinozaki K. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res , 2011, 18: 263-276
[5] Singh A K, Sharma V, Pal A K, Acharya V, Ahuja P S. Genome-wide organization and expression profiling of the NAC transcription factor familyin potato ( Solanum tuberosum L.). DNA Res , 2013, 20: 403-423
[6] Oliveira T M, Cidade L C, Gesteira A S, Coelho Filho M A, Soares Filho W S. Analysis of the NAC transcription factor gene family in citrus reveals a novel member involved in multiple abiotic stress responses. Tree Genet Genomics , 2011, 7: 1123-1134
[7] Puranik S, Sahu P P, Mandal S N, Parida S K, Prasad M. Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet ( Setaria italica L . ) . PLoS One , 2013, 8: 645-694
[8] Su H, Zhang S, Yuan X, Chen C, Wang X. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1, 2-CUC2 transcription factor family in apple. Plant Physiol Biochem , 2013, 71: 11-21
[9] Wang N, Zheng Y, Xin H, Fang L, Li S. Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera . Plant Cell Rep , 2013, 32: 61-75
[10] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science , 2000, 290: 2105-2110
[11] Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana . DNA Res , 2003, 10: 239-247
[12] Puranik S, Sahu P P, Srivastava P S, Prasad M. NAC proteins: regulation and role in stress tolerance. Trends Plant Sci , 2012, 17: 1360-1385
[13] Fang Y, You J, Xie K, Xie W, Xiong L. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics , 2008, 280: 547-563
[14] Badis G, Berger M F, Philippakis A A, Talukder S, Gehrke A R. Diversity and complexity in DNA recognition by transcription factors. Science , 2009, 324: 1720-1723
[15] Luscombe N M, Thornton J M. Protein-DNA interactions: amino acid conservation and the effects of mutations on binding specificity. J Mol Biol , 2002, 320: 991-1009
[16] Jensen M K, Kjaersgaard T, Nielsen M M, Galberg P, Petersen K, O’Shea C, Skriver K. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signaling. Biochem J , 2010, 426: 183-196
[17] Duval M, Hsieh T F, Kim S Y, Thomas T L. Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol Biol , 2002, 50: 237-248
[18] Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis - element in the early responsive to dehydration stress 1 promoter. Plant Cell , 2004, 16: 2481-2498
[19] Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol , 2003, 53: 383-397
[20] Ashley M K, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot , 2006, 57: 425-436
[21] Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol , 2003, 6: 280-287
[22] Gierth M, Maser P, Schroeder J I. The potassium transporter AtHAK5 functions in K + deprivation-induced high-affinity K + uptake and AKT1 K + channel contribution to K + uptake kinetics in Arabidopsis roots. Plant Physiol , 2005, 137: 1105-1114
[23] Shin R, Schachtman D P. Hydrogen peroxide mediates plant root response to nutrient deprivation. Proc Natl Acad Sci USA , 2004, 101: 8827-8832
[24] Fu H H, Luan S. AtKUP1: a dual-affinity K + transporter from Arabidopsis . Plant Cell , 1998, 10: 63-73
[25] Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA , 1992, 89: 3736-3740
[26] Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Porée F, Boucherez J, Lebaudy A, Bouchez D, Very A A, Simonneau T, Thibaud J B, Sentenac H. The Arabidopsis outward K + channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA , 2003, 100: 5549-5554
[27] Rigas S, Debrosses G, Haralampidis K, Vicente-Agullo F, Feldmann K A, Grabov A, Dolan L, Hatzopoulos P. TRH1 encodes a potassium transporter required for tip growth in Arabidopsis root hairs. Plant Cell , 2001, 13: 139-151
[28] Beehtold N, Ellis J, Pelletier G. In plant Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. Life Sci , 1993, 316: 1194-1199
[29] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot , 2007, 2: 1565-1572
[30] Zhang Z L, Xie Z, Zou X, Casaretto J, Ho T H, Shen Q J. A rice WRKY gene encodes a trans-criptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol , 2004, 134: 1500-1513
[31] Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell , 2001, 13: 1527-1540
[32] Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold, drought and ABA regulated gene expression. Plant Mol Biol , 1994, 24: 701-713
[33] Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell , 1993, 5: 1529-1539
[34] Simpson S D, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Two different novel cis -acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J , 2003, 33: 259-270
[35] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi- Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell , 2003, 15: 63-78
[36] Terzaghi W B, Cashmore A R. Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol , 1995, 46: 445-474
[37] Zhang J Z, Creelman R A, Zhu J K. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol , 2004, 135: 615-621
[38] Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol , 2006, 17: 113-122
[39] Collinge M, Boller T. Differential induction of two potato genes, Stprx2 and StNAC , in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol , 2001, 46: 521-529
[40] Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol , 2003, 53: 383-397
[41] Xie Q, Sanz-Burgos H, Guo J A, García C, Gutiérrez. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol , 1999, 39: 647-656
[42] Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C. A novel drought-inducible gene, ATAF1 , encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis . Plant Mol Biol , 2007, 63: 289-305
[43] Fang Y, You J, Xie K, Xie W, Xiong L. Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics , 2008, 280: 547-563
[44] Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J , 2007, 51: 617-630
[45] Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol , 2008, 67: 169-181
[46] Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J M, Gaymard F, Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science , 1992, 256: 663-665
[47] Kim E J, Kwak J M, Uozumi N, Schroeder J I. AtKUP1 : an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell , 1998, 10: 51-62
[48] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol , 2006, 57: 781-803
[1] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[2] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[3] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[4] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[5] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[6] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[7] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[8] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[9] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[10] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[11] 苑乂川, 陈小雨, 李明明, 李萍, 贾亚涛, 韩渊怀, 邢国芳. 谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应[J]. 作物学报, 2019, 45(4): 601-612.
[12] 陈雪娇,张旭东,韩治中,张鹏,贾志宽,连延浩,韩清芳. 半干旱区沟垄集雨种植谷子的肥料效应及其增产贡献[J]. 作物学报, 2018, 44(7): 1055-1066.
[13] 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432.
[14] 赵庆英, 张瑞娟, 王瑞良, 高建华, 韩渊怀, 杨致荣, 王兴春. 基于名优谷子品种晋谷21全基因组重测序的分子标记开发[J]. 作物学报, 2018, 44(05): 686-696.
[15] 高亮,张维宏*,杜雄,郭江,宋晋辉,王晓明,赵治海. 覆膜和补灌对杂交谷子产量形成与水分利用效率的影响[J]. 作物学报, 2017, 43(01): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!