作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1827-1834.doi: 10.3724/SP.J.1006.2017.01827
何巍1,范孝旭1,王志峰2,韦存虚1,*
HE Wei1,FAN Xiao-Xu1,WANG Zhi-Feng2,WEI Cun-Xu1,*
摘要:
用小角X射线散射(small-angle X-ray scattering, SAXS)波谱可以定量分析淀粉的片层结构,但缺乏波谱数据分析软件而且需要专业的数学公式推导,严重制约了SAXS在淀粉研究中的应用。本文建立了一种简单的作图分析方法,可定量测定SAXS波谱中的淀粉片层结构信息(峰强度、峰位置、半峰宽度和片层距离)。我们用该方法定量测定了不同晶体类型淀粉、不同直链淀粉含量的水稻淀粉、酸不溶淀粉和热不溶淀粉的SAXS波谱参数。结果表明,片层结构与淀粉的植物来源有关,而与淀粉晶体类型没有直接的相关性。相同植物来源的淀粉,其直链淀粉含量与SAXS峰强度和半峰宽度呈显著负相关而与片层距离呈正相关。酸水解不影响淀粉片层厚度,但明显改变片层峰强度和半峰宽度。加热处理也不影响淀粉片层厚度,但破坏淀粉晶体结构导致片层峰强度随温度升高逐渐降低直至消失。该定量作图分析法操作简单、重复性好、可信度高,可以在作物淀粉研究中广泛应用。
[1] Gallant D J, Bouchet B, Baldwin P M. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym, 1997, 32: 177–191 [2] Tran T T B, Shelat K J, Tang D, Li E P, Gilbert R G, Hasjm J. Milling of rice grains: the degradation on three structural levels of starch in rice flour can be independently controlled during grinding. J Agric Food Chem, 2011, 59: 3964–3973 [3] Vandeputte G E, Delcour J A. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydr Polym, 2004, 58: 245–266 [4] Donald A M. Plasticization and self assembly in the starch granule. Cereal Chem, 2001, 78: 307–314 [5] Cameron R E, Donald A M. A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer, 1992, 33: 2628–2635 [6] Sanderson J S, Daniels R D, Donald A M, Blennow A, Engelsen S B. Exploratory SAXS and HPAEC-PAD studies of starches from diverse plant genotypes. Carbohydr Polym, 2006, 64: 433–443 [7] Waigh T A, Perry P, Riekel C, Gidley M J, Donald A M. Chiral side-chain liquid-crystalline polymeric properties of starch. Macromolecules, 1998, 31: 7980–7984 [8] Yuryev V P, Krivandin A V, Kiseleva V I, Wasserman L A, Genkina N K, Fornal J, Blaszczak W, Schiraldi A. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydr Res, 2004, 339: 2683–2691 [9] Blazek J, Gilbert E P. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review. Carbohydr Polym, 2011, 85: 281–293 [10] Cai J W, Man J M, Huang J, Liu Q Q, Wei W X, Wei C X. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr Polym, 2015, 125: 35–44 [11] Lin L S, Guo D W, Zhao L X, Zhang X D, Wang J, Zhang F M, Wei C X. Comparative structure of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 2016, 52: 19–28 [12] Cai C H, Cai J W, Zhao L X, Wei C X. In situ gelatinization of starch using hot stage microscopy. Food Sci Biotechnol, 2014, 23: 15–22 [13] Man J M, Cai J W, Cai C H, Xu B, Huai H Y, Wei C X. Comparison of physicochemical properties of starches from seed and rhizome of lotus. Carbohydr Polym, 2012, 88: 676–683 [14] Cai J W, Cai C H, Man J M, Yang Y, Zhang F M, Wei C X. Crystalline and structural properties of acid-modified lotus rhizome C-type starch. Carbohydr Polym, 2014, 102: 799–807 [15] Cai C H, Cai J W, Man J M, Yang Y, Wang Z F, Wei C X. Allomorph distribution and granule structure of lotus rhizome C-type starch during gelatinization. Food Chem, 2014, 142: 408–415 [16] Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym, 1998, 36: 277–284 [17] Pikus S. Small-angle X-ray scattering (SAXS) studies of the structure of starch and starch products. Fibres Text East Eur, 2005, 13: 82–86 [18] 王维, 陈兴, 蔡泉, 默广, 陈中军, 李志宏, 张坤浩, 吴忠华. 小角X射线散射(SAXS)数据分析程序SAXS1.0. 核技术, 2007, 30: 571–575 Wang W, Chen X, Cai Q, Mo G, Chen Z J, Li Z H, Zhang K H, Wu Z H. Small angle X-ray scattering (SAXS) data analysis program SAXS1.0. Nucl Technol, 2007, 30: 571–575 (in Chinese with English abstract) [19] Jenkins P J, Cameron R E, Donald A M. A universal feature in the structure of starch granules from different botanical sources. Starch, 1993, 45: 417–420 [20] Cai J W, Cai C H, Man J M, Zhou W D, Wei C X. Structural and functional properties of C-type starches. Carbohydr Polym, 2014, 101: 289–300 [21] Lin L S, Huang J, Zhao L X, Wang J, Wang Z F, Wei C X. Effect of granule size on the properties of lotus rhizome C-type starch. Carbohydr Polym, 2015, 134: 448–457 [22] Slaman H, Blazek J, Lopez-Rubio A, Gilbert E P, Hanley T, Copeland L. Structure-function relationships in A and B granules from wheat starches of similar amylose content. Carbohydr Polym, 2009, 75: 420–427 [23] Emmambux M N, Taylor J R N. Morphology, physical, chemical, and functional properties of starches from cereals, legumes, and tubers cultivated in Africa: A review. Starch, 2013, 65: 715–729 [24] Bocharnikova I, Wasserman L A, Krivandin A V, Fornal J, Blaszczak W, Chernykh V Y, Schiraldi A, Yuryrv V P. Structure and thermodynamic melting parameters of wheat starches with different amylose content. J Therm Anal Calorim, 2003, 74: 681–695 [25] Koroteeva D A, Kiseleva V I, Sriroth K, Piyachomkwan K, Bertoft E, Yuryev P V, Yuryev V P. Structural and thermodynamic properties of rice starches with different genetic background: Part 1. Differentiation of amylopectin and amylose defects. Int J Biol Macromol, 2007, 41: 391–403 [26] Wang S J, Blazek J, Gilbert E, Copeland L. New insights on the mechanism of acid degradation of pea starch. Carbohydr Polym, 2012, 87: 1941–1949 [27] Cameron R E, Donald A M. A small-angle X-ray scattering study of the absorption of water into the starch granule. Carbohydr Res, 1993, 244: 225–236 |
No related articles found! |
|