作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1817-1826.doi: 10.3724/SP.J.1006.2017.01817
闫磊,姜存仓*,Muhammad Riaz,吴秀文,卢晓佩,杜晨晴,王宇函
YAN Lei, JIANG Cun-Cang*, Muhammad Riaz, WU Xiu-Wen, LU Xiao-Pei, DU Chen-Qing,WANG Yu-Han
摘要:
采用水培法,以油菜品种Cao 221167为试验材料,设置无机态硼酸(BA)和有机态山梨醇硼(SB)及不同Al3+ (0、100、200和500 μmol L–1)处理,研究不同形态硼(B)对油菜幼苗铝(Al)毒的缓解作用及不同形态B之间的缓解效应差异,以及利用FTIR (傅里叶红外光谱)技术分析叶片各物质含量的变化。结果表明,Al毒胁迫下,不同形态B (BA和SB)处理,显著提高植株生物量和根系长度(0、100、200和500 μmol L–1 Al毒胁迫下BA处理根长分别增加了52.15%、101.45%、366.70%和18.73%;SB处理分别增加了46.80%、133.98%、261.36%和10.77%),提高色素含量和SOD活性,而降低了Al含量、MDA含量和POD活性。不同形态B处理下,油菜幼苗在200 μmol L–1 Al3+处理下长势、生物量及色素含量最高。在500 μmol L–1 Al3+处理下,油菜幼苗株高、根长、总干鲜重及色素含量显著低于无Al处理;FTIR分析表明,Al毒胁迫下油菜叶片中蛋白质和低聚糖等含量明显上升,加B明显降低了蛋白质和低聚糖的含量,且BA处理降低幅度明显高于SB处理。说明不同形态B(BA和SB)的添加均明显缓解Al毒,且BA对Al毒缓解效果优于SB,这为农业生产中施用何种B肥来缓解Al毒起到一定的指导作用。
[1] Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiol, 1995, 107: 315–321 [2] Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol, 2003, 46: 237–260 [3] 沈仁芳. Al在土壤-植物中的行为及植物的适应机制. 北京: 科学出版社, 2008. pp 75–79 Shen R F. The Behavior of Aluminum in Soil Plants and the Adaptation Mechanism of Plants. Beijing: Science Press: 2008. 75–79 (in Chinese) [4] 肖厚军, 王正银, 何桂芳, 苟久兰. 贵州黄壤Al形态及其影响因素研究. 土壤通报, 2009, 40: 1044–1048 Xiao H J, Wang Z Y, He G F, Gou J L. Aluminum forms and their effect factors in yellow soils in Guizhou. Chin J Soil Sci, 2009, 40: 1044–1048 (in Chinese with English abstract) [5] 应小芳, 刘鹏, 徐根娣. 土壤中的Al及其植物效应的研究进展. 生态环境学报, 2003, 12: 237–239 Ying X F, Liu P, Xu G D. The advance in the research of aluminum in soil and its influence on plant. Eco Environ, 2003, 12: 237–239 (in Chinese with English abstract) [6] 刘鹏, 徐根娣, 姜雪梅, 应小芳. Al对大豆幼苗膜脂过氧化和体内保护系统的影响. 农业环境科学学报, 2004, 23: 51–54 Liu P, Xu G D, Jiang X M, Ying X F. Effects of aluminum on membrane lipid peroxidation and endogenous protective systems of soybean seedling. J Agro-Environ Sci, 2004, 23: 51–54 (in Chinese with English abstract) [7] 蔡妙珍, 刘鹏, 徐根娣, 吕庭君. 钙、硅对Al胁迫下荞麦光合生理的影响. 水土保持学报, 2008, 22(2): 206–208 Cai M Z, Liu P, Xu G D, Lyu T J. Effect of calcium and silicon on photosynthetic physiology of buckwheat under aluminum stress. J Soil Water Conserv, 2008, 22(2): 206–208 (in Chinese with English abstract) [8] 韩配配, 秦璐, 李银水, 廖祥生, 徐子先, 余常兵, 胡小加, 谢立华, 廖红. 不同营养元素缺乏对甘蓝型油菜苗期生长和根系形态的影响. 中国油料作物学报, 2016, 38: 88–97 Han P P, Qin L, Li Y S, Liao X S, Xu Z X, Yu C B, Hu X J, Xie L H, Liao H. Effects of different nutrient deficiencies on growth and root morphological changes of rapeseed seedlings (Brassica napus L.). Chin J Oil Crop Sci, 2016, 38: 88–97 (in Chinese with English abstract) [9] 杨国会, 王莉莹, 刘伟, 王一. 铝毒对大豆根系生长的影响. 安徽农业科学, 2009, 37: 1439–1440 Yang G H, Wang L Y, Liu W, Wang Y. Effects of aluminum toxicity on growth of soybean root. J Anhui Agric Sci, 2009, 37: 1439–1440 [10] 许苗苗, 喻敏, 王昌全, 徐彩娟, 萧洪东, 冯英明. 硼对豌豆根尖铝毒的影响. 土壤, 2007, 39(6): 154–157 Xu M M, Yu M, Wang C Q, Xu C J, Xiao H D, Feng Y M. Influence of boron on aluminum toxicity in root tip of pea (Pisum sativum). Soils, 2007, 39(6): 154–157 (in Chinese with English abstract) [11] Blevins D G, Lukaszewski K M. Boron in plant structure and function. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 481–500 [12] Lenoble M E, Blevins D G, Sharp R E, Cumbie B G. Prevention of aluminum toxicity with supplemental boron. I. Maintenance of root elongation and cellular structure. Plant Cell Environ, 1996, 19: 1132–1142 [13] 王志颖, 刘鹏, 李锦山, 吴慧芳, 刘莹, 芦伯鑫. 铝胁迫下外源有机酸对油菜根系形态及叶绿素荧光特性的影响. 江苏农业学报, 2011, 27: 756–762 Wang Z Y, Liu P, Li J S, Wu H F, Liu Y, Lu B X. Effects of exogenous organic acids on root morphology and chlorophyll fluorescence characteristics of oilseed rape under aluminum stress. Jiangsu J Agric Sci, 2011, 27: 756–762 (in Chinese with English abstract) [14] Yang Y H, Zhang H Y. Boron amelioration of aluminum toxicity in mungbean seedlings. J Plant Nutr, 1998, 21: 1045–1054 [15] Yu M, Shen R F, Xiao H D, Xu M M, Wang H Z, Wang H Y, Zeng Q L, Bian J F. Boron alleviates aluminum toxicity in pea (Pisum sativum). Plant Soil, 2009, 314: 87–98 [16] 徐建明, 汪鑫, 罗玉明, 李师默, 孙国荣, 陈刚. 两种形态硼对小麦幼苗叶绿素荧光参数保护酶活性的影响. 华北农学报, 2010, 24(2): 149–155 Xu J M, Wang X, Luo Y M, Li S M, Sun G R, Chen G. Effects of two forms of boron on antioxidant enzymes and chlorophyll fluorescence parameters of wheat seedlings. Acta Agric Boreali-Sin, 2010, 24(2): 149–155 (in Chinese with English abstract) [17] 段蔚. 多元醇络合硼对油菜幼苗生长及营养元素吸收的功效. 南京农业大学硕士学位论文, 江苏南京, 2012 Duan W. Effects of Polyol-Chelated Boron Fertilizers on Seedling growth and Uptake of Mineral Nutrients in Rape. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2012 (in Chinese with English abstract) [18] 薛生国, 朱锋, 叶晟, 王钧, 吴雪娥. 紫茉莉对铅胁迫生理响应的FTIR研究. 生态学报, 2011, 31: 6143–6148 Xue S G, Zhu F, Ye C, Wang J, Wu X E. Physiological response of Mirabilis jalapa Linn. to lead stress by FTIR spectroscopy. Acta Ecol Sin, 2011, 31: 143–6148 (in Chinese with English abstract) [19] 龚宁, 李荣华, 孟昭福, 杨公明. Cd对小白菜萌发生理影响的FTIR-ATR研究. 农业环境科学学报, 2010, 29(1): 9–14 Gong N, Li R H, Meng Z F, Yang G M. Physiological response of Brassica chinensis L. seeds in germination to cadmium toxicity by FTIR-ATR pectroscopy. J Agro-Environ Sci, 2010, 29(1): 9–14 (in Chinese with English abstract) [20] 金婷婷, 刘鹏, 张志祥, 徐根娣, 赵莉莉. 外源柠檬酸缓解大豆根系短期Al胁迫的FTIR特征分析光谱学与光谱分析. 光谱学与光谱分析, 2009, 29: 367–371 Jin T T, Liu P, Zhang Z X, Xu G D, Zhao L L. Analysis of roots of soybean (Glycine max Merrill) treated with exogenous citric acid plus short-time aluminum stress by direct determination of FTIR spectrum. Spectrosc Spectral Anal, 2009, 29: 367–371 (in Chinese with English abstract) [21] 张子龙, 李加纳, 唐章林, 谌利, 王瑞. 环境条件对油菜品质的调控研究. 中国农学通报, 2006, 22(2): 124–124 Zhang Z L, Li J N, Tang Z L, Chen L, Wang R. The research progress of the effect of environmental factors on quality characters of rapeseed. Chin Agric Sci Bull, 2006, 22(2): 124–124 (in Chinese with English abstract) [22] 余礼明, 吴谋成. 油菜籽脱壳与分离设备研究注. 中国粮油学报, 2002, 17(5): 40–43 Yu L M, Wu M C. Developing equipment for dehulling and separation of rapeseed. J Chin Cereals Oils Assoc, 2002, 17(5): 40–43 (in Chinese with English abstract) [23] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. pp 167–280 Wang X K. Principles and Techniques of Plant Physiological Biochemical Experiment, 2nd edn. Beijing: Higher Education Press, 2006. pp 167–280 (in Chinese) [24] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 276–278 Bao S D. Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 276–278 (in Chinese) [25] 攸玉仙. 植物样品中Al的测定. 物探与化探, 1997, 21:475–477 You Y X. Determining aluminum of plant specimen. Geophys Geochem Expl, 1997, 21: 475–477 (in Chinese with English abstract) [26] Delhaize E. Uptake on environmental stress: Aluminum toxicity and tolerance in plants. Plant Physiol, 1995, 107: 315–321 [27] 徐芬芬. 柠檬酸对Al胁迫下大豆根系生长和生理特性的影响. 生物加工过程, 2015, (4): 75–78 Xu F F. Effects of citric acid on root growth and physiological characteristics of soybean under aluminum stress. Chin J Bioprocess Eng, 2015, (4): 75–78 (in Chinese with English abstract) [28] 张芬琴, 徐新建. 外源硼对Al胁迫小麦幼苗的缓解效应. 植物生理学通讯, 2001, 37(1): 21–24 Zhang F Q, Xu X J. Mitigative effect of exogenous boron on the wheat seedlings under aluminum stress. Plant Physiol Communications, 2001, 37(1): 21–24 (in Chinese with English abstract) [29] Yang Y H, Gu H J, Fan W Y, Abdullahi B A. Effects of boron on aluminum toxicity on seedlings of two soybean cultivars. Water Air Soil Pollution, 2004, 154: 239–248 [30] Heidarabadi M D, Ghanati F, Fujiwara T. Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol Biochem, 2011, 49: 1377–1383 [31] 李梅, 喻敏. 硼对果胶Al吸附解吸特性的影响. 中国农业科学, 2013, 46: 1595–1602 Li M, Yu M. Characteristics of adsorption and desorption of aluminum in pectin as influenced by boron. Sci Agric Sin, 2013, 46: 1595–1602 (in Chinese with English abstract) [32] 王成, 蒋泽平, 李文青, 邵文静, 张婷, 季峻峰. FTIR-NIR研究镉胁迫对构树试管幼苗生长的影响与机理. 农业环境科学学报, 2014, 33: 673–679 Wang C, Jiang Z P, Li W Q, Shao E J, Zhang T, Ji J F. FTIR-NIR spectrum study on response and mechanism of Broussonetia papyrifera sprout under cadmium stresses. J Agro-Environ Sci, 2014, 33: 673–679 (in Chinese with English abstract) [33] 张亚楠, 王赢, 陈奇, 黄庶识, 李昆志. 不同品种荞麦耐Al性的FTIR鉴别. 浙江大学学报(农业与生命科学版), 2010, 36: 683–690 Zhang Y N. Wang Y, Chen Q, Huang S S, Li K Z. Endurance determination of different buckwheat cultivars to aluminum by FTIR spectrum. J Zhejiang Univ (Agric Life Sci Edn), 2010, 36: 683–690 (in Chinese with English abstract) [34] Snowden K C, Richards K D, Gardner R C. Aluminum induced genes induction by toxic metals, low-calcium, and wounding and pattern of expression in root tips. Plant Physiol, 1995, 107: 341–348 [35] Yang Q S, Wang Y Q, Zhang J J. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics, 2007, 7: 737 [36] 张争艳, 刘鹏, 陈微微, 陈传奇, 贾佳. 不同品种大豆耐Al性的FTIR分析研究. 光谱学与光谱分析, 2009, 29: 372–377 Zhang Z Y, Liu P, Chen W W, Chen C Q, Jia J. FTIR study of the endurance to al of different soybean cultivars. Spectrosc Spectral Anal, 2009, 29: 372–377 (in Chinese with English abstract) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[10] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[11] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[14] | 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903. |
[15] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
|